УДК 629.8.036:681.518.54

С.В. БЕЗУГЛЫЙ, С.В. ЕПИФАНОВ

Национальный аэрокосмический университет им. Н. Е. Жуковского "ХАИ", Украина

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ВЕРТОЛЕТНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКИ, УЧИТЫВАЮЩАЯ КРУТИЛЬНУЮ ЖЕСТКОСТЬ ТРАНСМИССИИ

Рассмотрена упруго-массовая модель вертолетной двигательной установки, учитывающая крутильные колебания трансмиссии при изменении режимов работы. Реализованы алгоритм и программа расчетов крутильных колебаний с учетом динамики роторов системы «винт – редуктор – свободные турбины». Получены результаты, согласующиеся с нелинейной поузловой динамической моделью и позволяющие определить собственные частоты крутильных колебаний в двигательной установке.

вертолетная двигательная установка, крутильные колебания и углы, упруго- массовая модель, переходные процессы, динамика роторов, собственные частоты колебаний

Введение

Опыт эксплуатации большинства вертолетов свидетельствует, что на низких частотах, близких к собственным частотам крутильных колебаний элементов двигательной установки (ДУ), могут возникнуть автоколебания замкнутой системы «регулятор — двигатель — трансмиссия — несущий винт — регулятор». Устранить опасные последствия указанного явления можно путем соответствующего выбора закона управления, но для этого необходимо использовать модели динамики вертолетных ДУ, учитывающие крутильную жесткость трансмиссии.

1. Формулировка проблемы. Объект исследования

Существующие модели описывают динамику роторов ГТД, кинематически жестко связанных с вертолетными механизмами (винтом, редуктором и др.). Для математического описания возможности возникновения крутильных колебаний в действующие модели необходимо ввести уравнения, учитывающие крутильную податливость соединительных валов.

Объектом исследования является пяти-массовая упругая колебательная система (рис. 1), включающая в себя нижний (1) и верхний (2) несушие винты, свободные турбины двигателей (3, 4) и вертолетный редуктор (5). Динамические свойства приведенной на рис. 1 системы характеризуются осевыми моментами инерции J и мгновенными значениями крутильных углов ϕ , приведенными к средней частоте вращения несущих винтов ω , а также коэффициентами крутильной жесткости c. В связи с малым значением общего приведенного момента инерции редуктора по сравнению с приведенными моментами инерции турбин и винтов действительную многомассовую схему редуктора заменяем эквивалентной одномассовой с моментом инерции J_5 .

Рис. 1. Структура упруго-массовой модели ДУ вертолета

2. Математическая модель

2.1. Уравнения вынужденных колебаний

Систему уравнений, описывающих вынужденные колебания рассматриваемой упруго-массовой

системы, без учета демпфирующих факторов, можно представить в виде:

$$J_i \ddot{\varphi}_i = -c_i x_i + M_i$$
; $(i = 1, ..., 4)$; (1)

$$J_5\ddot{\varphi}_5 = \sum_{i=1}^4 c_i x_i - \sum_{i=1}^4 M_i ,$$

где M_i – крутящие моменты; φ_i – крутильные углы; $x_i = \varphi_i - \varphi_5$, (i=1...4) – относительные крутильные углы в связях системы.

В системе уравнений (1) крутящие моменты M_i представляют собой внешние возмущающие воздействия, в общем случае зависящие от времени; произведения $c_i x_i$ — мгновенные значения крутильных моментов, вызванные крутильными деформациями валов.

2.2. Уравнения динамики роторов

Уравнения (1) описывают колебательно-вращательное движения элементов ДУ с переменными угловыми скоростями $\dot{\phi}_i$. Общее движение системы представляет собой вращение со средней угловой скоростью и колебательно-вращательное. Для определения средней угловой скорости винтов ω используем предположение об абсолютной жесткости связей и известное уравнение динамики роторов:

$$\dot{\omega} \sum_{i=1}^{5} J_i = \sum_{i=1}^{4} M_i \ . \tag{2}$$

Здесь различные угловые скорости элементов системы приведены к осредненной угловой скорости вращения несущих винтов. Применение уравнения (2) позволяет рассматривать первые производные от колебательных углов как отклонения от угловой скорости вращения абсолютно жесткой системы. Таким образом, в результате решения системы (1) и уравнения (2) можно найти функции вида $\omega_i = \omega + \dot{\phi}_i$, описывающие динамику роторов.

2.3. Линеаризованная математическая модель

Полученная выше система уравнений является нелинейной в силу нелинейного характера зависимо-

сти моментов от средней частоты вращения. Выбирая в качестве переменных отклонения величин от номинальных значений на установившемся режиме, представим упруго-массовую модель ДУ в виде

$$J_{i}\ddot{\varphi}_{i} = -c_{i}x_{i} + M_{0i} + \Delta M_{i}, (i = 1,...,4);$$

$$J_{5}\ddot{\varphi}_{5} = \sum_{i=1}^{4} c_{i}x_{i} - \sum_{i=1}^{4} \Delta M_{i};$$

$$\Delta\dot{\omega}\sum_{i=1}^{5} J_{i} = \sum_{i=1}^{4} \Delta M_{i},$$
(3)

где ΔM_i — отклонения крутящих моментов в связях от номинальных значений M_{0i} ;

 $\Delta \omega$ — отклонение угловой скорости от номинального значения ω_0 .

При этом номинальные значения M_{0i} во всех связях одинаковы по абсолютной величине, а знаки этих величин зависят от направления приложения моментов (положительным будем считать момент, увеличивающий угловую скорость).

2.4. Начальные условия

Начальными условиями для системы уравнений (3) служат значения крутильных углов на номинальном режиме работы ДУ и нулевое значение отклонения угловой скорости. Однако, поскольку количество углов на один превышает количество моментов, необходимо задать одно из значений φ_i как опорное, относительно которого исчисляются остальные углы. Для обеспечения удобства решения системы уравнений (1) выберем в качестве опорного угловое положение вала редуктора и примем $\varphi_{05} = 0$. При этом остальные начальные условия принимают вид

$$\phi_{0i} = x_{0i} = -\frac{M_{0i}}{c_i}, (i = 1, ..., 4)$$
(4)

и
$$\Delta\omega_0 = 0$$
.

В такой постановке начальные значения крутильных углов упруго-массовой модели ДУ определены относительно редуктора вертолета.

3. Реализация модели

3.1. Аппроксимации крутящих моментов

Крутящие моменты несущих винтов в общем случае зависят от ω и значения угла общего шага несущего винта ϕ_{out} . Аппроксимируем эту зависисимость функцией следующего вида:

$$M_i = -\left(b_0 + b_1\phi_{ou} + b_2\phi_{ou}^2\right)\omega^2$$
 , $(i=1,2)$, (5) где b_i – постоянные коэффициенты.

Будем определять с помощью (5) как номинальные значения крутящих моментов M_{0i} с учетом правила знаков (см. п. 2.3), так и отклонения моментов несущих винтов

$$\Delta M_i = M(\omega_0 + \Delta \omega) - M(\omega_0), (i = 1, 2). \quad (6)$$

Отклонения крутящих моментов свободных турбин аппроксимируем выражением вида

$$\Delta M_i = a_{cm} \Delta n_{cm,i} + a_{m\kappa} \Delta n_{m\kappa,i} + a_G \Delta G_{m,i}$$
, $(i=3,4)$,(7) где $\Delta n_{cm,i}$, $\Delta n_{m\kappa,i}$, $\Delta G_{m,i}$ — отклонения от номинальных значений частот вращения свободных турбин и турбокомпрессоров, а также расходов топлива соответственно; a_i — постоянные коэффициенты.

Средние частоты вращения свободных турбин прямо пропорциональны средней частоте вращения несущих винтов, а отклонение частот вращения турбокомпрессоров описываются уравнениями

$$\Delta \dot{n}_{m\kappa,i} = d_{m\kappa} \Delta n_{m\kappa,i} + d_G \Delta G_{m,i}$$
 , $(i=3,4)$, (8) где d_i – постоянные коэффициенты.

3.2. Программная реализация

Реализация модели (3) с начальными условиями (4) осуществлена с помощью программы, созданной в среде VisSim. Уравнения движения интегрировали методом Рунге-Кутта 4-го порядка с шагом по времени 10^{-4} с. Значения аппроксимационных коэффициентов a_j , d_j определены с помощью нелинейной поузловой динамической модели вертолетного ГТД, а b_j — по экспериментальным характеристикам несущего винта. В качестве источника возникновения

кругильных колебаний задавали изменение общего шага лопастей винта.

3.3. Пример расчета

В качестве примера рассмотрим переходные процессы, происходящие в вертолетной ДУ при скачкообразном переводе лопастей винта из положения на взлетном режиме до нейтрального в отсутствие системы автоматического управления (САУ), представленные на рисунках 2...5.

Рис. 2. Относительные частоты вращения ω/ω_0 :

- – турбокомпрессора;
- □ свободной турбины

Рис. 3. Относительная скорость упруго-массовых колебаний свободной турбины $\,\dot{\phi}_{3,4}/\omega_0\,.$

На рис. 2 представлена динамика переходного процесса по частотам вращения свободных турбин и турбокомпрессоров. Частоты вращения турбин увеличиваются из-за резкого снижения нагрузки на валах, а частоты вращения турбокомпрессоров остаются неизменными вследствие отсутствия изменения расхода топлива. Полученные результаты качественно и количественно соответствуют результа-

там расчетов по нелинейной динамической модели ДУ. Такое же соответствие наблюдается при сопоставлении результатов расчетов крутящих моментов.

На рис. 3, 4 представлены относительные скорости упруго-массовых колебаний $\dot{\phi}_i/\omega_0$ свободных турбин и нижнего винта соответственно (зависимость для верхнего винта аналогична и близка к представленной на рис. 4). Полученные результаты демонстрируют наличие свободных колебаний с разными частотами и амплитудой до 1% у свободных турбин и до 1,7% у нижнего винта.

Рис. 4. Относительная скорость упруго-массовых колебаний нижнего винта $\dot{\phi}_1/\omega_0$

Частотная спектральная характеристика, в качестве примера приведенная для нижнего винта (рис. 5), позволяет определить опасные с точки зрения возникновения автоколебаний частоты. В нашем примере таковыми могут быть колебания с частотами примерно 0,7; 2; 16,5 Гц, которым соответствуют пики на характеристике рис. 5.

Рис. 5. Спектральный состав упруго-массовых колебаний нижнего винта (БПФ)

Заключение

Полученные результаты расчетов позволяют сделать следующие выводы:

- 1. Динамика рассмотренной многороторной системы соответствует предварительным инженерным представлениям о ее поведении, что подтверждает состоятельность разработанной математической модели.
- 2. Уровень амплитуды крутильных колебаний роторов невелик, поэтому при исследовании таких характеристик переходных процессов, как характерное время, наличие и уровень забросов ими можно пренебречь.
- 3. Однако частотные свойства указанных колебаний требуют учета их влияния на динамику САУ, так как, во-первых, характерные частоты колебаний лежат в частотном диапазоне управляющих воздействий в случае использования электронной САУ, а во-вторых, эти колебания могут повлиять на выходные сигналы датчиков частоты вращения роторов, которые участвуют в формировании обратных связей в контурах управления.
- 4. Учитывая п. 3, дальнейшие исследования предложений по учету углового положения лопастей винта в контуре управления частотой вращения свободной турбины следует проводить с использованием данной математической модели.

Литература

- Гессоу А., Мейерс Г. Аэродинамика вертолета. М.: Оборонгиз, 1954. 256 с.
- 2. Пановко Я.Г. Основы прикладной теории упругих колебаний. М.: Машиностроение, 1967. 316 с.
- 3. Синтез систем управления и диагностирования газотурбинных двигателей / С.В. Епифанов, Б.И. Кузнецов, И.Н. Богаенко и др. К.: Техніка, 1998. –312 с.

Поступила в редакцию 25.04.2005

Рецензент: д-р техн. наук, проф. А.С. Кулик, Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков.