УДК 539.3

И.С. ВЕРЕМЕЕНКО¹, Б.Я. КАНТОР¹, Т.Ф. МЕДВЕДОВСКАЯ¹, И.Е. РЖЕВСКАЯ¹, С.А. АНДРЮЩЕНКО²

¹Институт проблем машиностроения им. А.М. Подгорного НАН Украины, Украина, ²000 "Харьковтурбоинжениринг", Украина

ПРОЧНОСТЬ, ДИНАМИКА НЕСУЩИХ КОНСТРУКЦИЙ И РАБОЧИХ КОЛЕС РАДИАЛЬНО-ОСЕВЫХ ГИДРОТУРБИН

Разработан метод гармонического анализа при решении задачи о вынужденных колебаниях крышек и рабочих колес гидротурбин путем разложения перемещений по собственным формам колебаний этого класса конструкций. Собственные частоты и формы колебаний рабочих колес определяются методом конечных элементов (МКЭ), а крышек – МКЭ в сочетании с разложением в ряды Фурье искомых перемещений и нагрузок. Исследовано влияние условий закрепления, типа материала на собственные частоты и формы колебаний элементов конструкций гидротурбин. Выполненные работы позволяют оценить состояние крышек и рабочих колес гидротурбин, составить таблицы спектров частот колебаний конструкций гидротурбин, представить технические рекомендации по модернизации чугунной крышки агрегата Днепровской ГЭС–1.

гидротурбина, метод конечных элементов, собственные и вынужденные колебания

Вступление

В последние годы, в связи с обострившейся конкуренцией на рынке энергетического оборудования, резко возрос уровень требований к его эффективности и надежности. Кроме того, на ряде ГЭС, проработавших более 35 лет, энергетические показатели не соответствуют современному уровню. Возникшая проблема решается путем реконструкции и замены физически изношенного и морально устаревшего оборудования.

Особое внимание уделяется несущим конструкциям и рабочим колесам (РК) турбины, которые находятся под динамическим воздействием потока воды. К несущим конструкциям относится крышка турбины. Крышка гидротурбины представляет собой пространственную конструкцию, состоящую из тонкостенных тел вращения (обечаек), подкрепленных системой часто расположенных ребер – меридиональных многосвязных пластин. Она не только ограничивает сверху проточную часть турбины, но и является несущей конструкцией, воспринимающей значительные нагрузки от массовых сил и гидродинамического давления, а также от радиальной нагрузки со стороны ротора турбины. Крепление ее к статору осуществляется большим количеством вибростойких болтов с контролируемой затяжкой.

Рабочее колесо радиально-осевой гидротурбины состоит из ступицы, обода и системы лопастей. Ступица и обод являются телами вращения, лопасти – оболочки переменной толщины. Рабочее колесо крепится к валу болтами, которые расположены вдоль окружности на ступице.

Основное требование при проектировании крышки и РК турбин – обеспечение прочности и жесткости при минимальной металлоемкости.

1. Методика расчета собственных и вынужденных колебаний конструкций гидротурбин

Задачу о собственных колебаниях крышек гидротурбины решаем, исходя из матричного уравнения свободных колебаний

$$\mathbf{K}(U) - p^2 \mathbf{M}(U) = 0, \tag{1}$$

где К – матрица жесткости;

М – матрица масс конструкции;

p – собственные частоты колебаний;

U-собственные векторы (формы) колебаний.

Матрицу жесткости и масс конструкции формируем поэлементно [1, 2].

Определение собственных частот и форм колебаний осуществляем методом итераций в подпространстве, решая на каждом шаге систему алгебраических уравнений методом LDL^T-факторизации.

2. Метод решения задачи о вынужденных колебаниях циклически симметричных конструкций гидротурбин

Вынужденные колебания конструкции при полигармоническом во времени нагружения описываются уравнением [3]

$$\mathbf{K}U - \mathbf{M}\ddot{U} = Q, \qquad (2)$$

где *U* – изменяющийся во времени *t* вектор перемещений;

Q – вектор внешней узловой нагрузки.

При решении МКЭ задачи динамики обычно применяют метод прямого интегрирования или метод разложения перемещений по собственным формам.

При использовании метода прямого интегрирования строим матрицы масс \mathbf{M}_{κ} и жесткости \mathbf{K}_{κ} конструкции для любой *k*-й гармоники разложения относительно вектора амплитудных значений перемещений u_{ik} , применив разработанный конечноэлементный подход [1, 2].

Векторы перемещений и внешних нагрузок раскладываем в ряд Фурье по *t*

$$u = \sum_{i=1}^{nt} u_i(r, z, \varphi) \sin(\omega_i t + \beta_i) ; \qquad (3)$$

$$\mathbf{Q} = \sum_{i=1}^{nt} q_i(r, z, \varphi) \sin(\omega_i t + \beta_i), i = 1, 2, \dots, \text{nt}.$$
(4)

В свою очередь, векторы $u_i(r, z, \phi)$ и $q_i(r, z, \phi)$, которые отвечают *i*-й гармонике, представляем рядами Фурье по окружной координате:

$$u_{rk} = u_{rk}^{0} + \sum_{k=1}^{kf} u_{rk}^{k} \cos k\varphi ;$$

$$q_{rk} = q_{rk}^{0} + \sum_{k=1}^{kf} q_{rk}^{k} \cos k\varphi ;$$

$$u_{zk} = u_{zk}^{0} + \sum_{k=1}^{kf} u_{rk}^{k} \cos k\varphi ;$$

$$q_{zk} = q_{zk}^{0} + \sum_{k=1}^{kf} q_{rk}^{k} \cos k\varphi ;$$

$$u_{\phi k} = \sum_{k=1}^{kf} u_{\phi k}^{-k} \sin k\varphi ; \qquad q_{\phi ik} = \sum_{k=1}^{kf} q_{\phi k}^{-k} \sin k\varphi ,$$

$$k = 0, 1, 2, \dots, kf. \qquad (5)$$

Используя разложения (3) – (5), приводим уравнения (2) к решению ряда независимых квазистатических задач для гармоник, фиксированных по времени

$$\left[\mathbf{K}_{k}-\omega_{i}^{2}\mathbf{M}_{k}\right]u_{ik}=Q_{ik}.$$
 (6)

Рассмотрим второй подход к решению задачи о вынужденных колебаниях конструкции – метод разложения искомых перемещений по собственным формам [3]. Метод приводит уравнение (2) к эффективной относительно интегрирования форме с помощью преобразования вектора перемещений конечных элементов

$$u(t) = Bx(t), \tag{7}$$

где *В* – искомая прямоугольная матрица преобразования размерностью n,

x(*t*) – вектор обобщенных перемещений порядка *n*<<*N*, зависящий от времени *t*.

Целью преобразования является получение новых матриц $\widetilde{\mathbf{K}}$, $\widetilde{\mathbf{M}}$, имеющих меньший размер, чем исходные матрицы. Искомая матрица *B* должна быть неособенной (ранг *B* может равняться n) для обеспечения единственности преобразования (7).

Эффективная матрица преобразования В опреде-

ляется из решения уравнения свободных колебаний конструкции (1).

Уравнение (2) решается в два этапа. Первый этап – из уравнения (1) находим п собственных частот и форм колебаний конструкции $(\omega_1^2, \mathbf{v}_1), (\omega_2^2, \mathbf{v}_2),, (\omega_n^2, \mathbf{v}_n)$. Собственные векторы v_i ортонормированны по матрице **M**.

Второй этап – ищем решение в виде разложения вектора и по собственным формам

$$u = \sum_{i=1}^{n} a_i v_i \; ; \qquad a_i = a_i(t) \; . \tag{8}$$

Подставляя (8) в уравнение движения (2), получим уравнение движения конструкции относительно обобщенных перемещений

$$\mathbf{M}\sum \ddot{a}_{i}(t)\mathbf{v}_{i} + \mathbf{K}\sum a_{i}(t)\mathbf{v}_{i} = Q(t, r, z, \varphi).$$
(9)

Умножая левую сторону (9) на **v**_i^m и учитывая свойство ортогональности векторов, получим

$$\mathbf{B}^{m}\mathbf{M}\mathbf{B} = \mathbf{I} \quad ; \qquad \mathbf{B}^{m}\mathbf{K}\mathbf{B} = \boldsymbol{\lambda} \quad , \tag{10}$$

где **В** — матрица преобразования, состоящая из векторов v_i ,

 λ – диагональная матрица с элементами $\lambda_i = \omega_i^2, i = 1, 2, ..., n$.

Используя (10), приходим к системе дифференциальных уравнений

$$[\ddot{a}(t)] + \lambda[a_i(t)] = q(t) . \tag{11}$$

Если ограничиться случаем гармоничной нагрузки, то, подставляя в (11) выражение $[a_i(t)] = \sum_{k=1}^{n} [a_{ik}] \sin \omega_k t$ в виде гармонического ряда,

приходим к совокупности несвязанных уравнений

$$\lambda_i[a_{ik}] - \omega_k^2[a_{ik}] = [q_k] .$$

Отсюда находим элементы матрицы

$$[a_{ik}] = \frac{[q_k]}{\lambda_i - \omega_k^2} ,$$

где ω_{κ} – частоты слагаемых нагрузки (k = 1, 2, ..., n).

Сравнивая методы прямого интегрирования и

разложения по собственным формам, приходим к выводу, что второй из них является более эффективным, так как изменение базиса значительно уменьшит ширину ленты разрешающей системы уравнений. Для получения решения достаточно учитывать ограниченное количество собственных форм.

3. Анализ спектра частот колебаний и максимальных напряжений в крышках гидротурбин

Приведем расчетные схемы конструкций модернизируемой крышки, изготовленной из чугуна (рис. 1), и стальной крышки, которая проектируется (рис. 2).

Рис. 1. Расчетная схема чугунной крышки гидротурбины

Рис. 2. Расчетная схема стальной крышки гидротурбины

Расчет собственных частот колебаний крышки проведен для двух вариантов опирания : опирание по линии крепления крышки к статору; защемление по поверхности фланца крышки.

Данные, необходимые для расчета динамики крышки, учитывают вес таких деталей: лопатки направляющего аппарата, подшипника вала и др. Спектры собственных частот чугунной и стальной крышек гидротурбин смещенные друг относительно друга и по отношению к оборотнолопаточной частоте (f = 33,33 Гц). При защемлении крышки собственные частоты выше, чем при его отсутствии, так как жесткость крышки в осевом направлении возрастает. Исходя из этого, необходимо уделять внимание крепежу фланцевого соединения «крышка-статор».

Крышка гидротурбины работает в таких режимах: установившийся – нормальная работа, переходный – сброс нагрузки (срыв уплотнения).

Определим максимальные напряжения, которые возникают в крышках турбины, под действием динамических нагрузок. Статическими нагрузками являются силы веса и гидростатического давления (рис. 1, 2). Гидродинамическое давление изменяется по гармоническому закону. Амплитуда гидродинамического давления задавалась $2P_0 = 0,1H (H - мак$ симальный напор).

В табл. 1 приведены амплитудные напряжения в чугунной крышке, обусловленные пульсацией давления, и максимальные напряжения для различных частот возбуждения.

> Таблица 1 Максимальные напряжения при динамической нагрузке

Тип закреп- ления	Частота возму- щения $\omega_{\rm B}$, Гц	Динами напря: σ _a , N E 8.5·10 ⁴	ические жения /Па Е 11.10 ⁴	Максим напряже МІ Е 8.5·10 ⁴	альные ения σ _i , Та Е 11·10 ⁴
Защемление по поверх- ности флан- ца	1,388	7,3	7,3	161,5	161,5
	18,05	13,5	11,1	167,7	165,3
	33,05	9,8	14,1	164,0	168,3
Опирание по линии крепежа	1,388	6,9	6,9	158,3	158,3
	18,05	13,7	10,8	165,0	162,1
	33,05	9,8	12,6	161,1	163,9

Рассмотрим результаты расчетов динамического НДС одного из вариантов нового проекта стальной крышки гидротурбины. Распределение давления по поверхности стальной крышки представлено на рис. 2. Расчеты проводились для нормального режима и режима срыв уплотнения. Нормальный режим работы агрегата характеризуется такими амплитудами давлений: 0,34 МПа (G); 0,2 МПа (C); 0,13 МПа (F).

На рис. 3, 4 приведены амплитудно-частотные характеристики крышки при защемлении по поверхности фланца для нормального и переходного режимов (срыв уплотнения) соответственно. Первая собственная частота колебаний $\omega_1 = 45,5$ Гц. Максимальные напряжения в режиме срыва уплотнения превышают аналогичные в нормальном режиме на 18 - 20 %.

Рис. 3. Амплитудно-частотная характеристика стальной крышки в нормальном режиме

Рис. 4. Амплитудно-частотная характеристика стальной крышки в режиме срыв уплотнения

Анализ амплитудно-частотных характеристик показывает достоверность результатов вычисления собственных частот. Так, при приближении частоты нагрузки к первой собственной частоте наблюдается резкое повышение напряжений со следующим спадом после резонанса.

4. Расчет частот и форм собственных гидроупругих колебаний рабочего колеса

Проведен численный анализ колебаний колеса радиально осевой высоконапорной гидротурбины. Определение собственных частот и форм колебаний РК в вакууме выполнялось на основе методики [3], согласно [2] дана оценка влияния присоединенных масс воды на гидродинамические характеристики конструкции. Общий вид колеса Нурекской ГЭС изображен на рис. 5. Результаты расчета даны в табл. 2.

Рис. 5. Общий вид рабочего колеса

Таблица 2

Результаты численного анализа

Номер частоты	Частоты в воздухе	Частоты в воде
1-2	70,98	66,33
3-4	81,94	73,29
5	82,7	75,6
6-7	144,1	112,6
8	144,8	125,7

Выводы

Разработаны эффективные методы для решения задачи о собственных и вынужденных колебаниях крышек и РК гидротурбин. Метод позволяет расчетным путем уточнить динамические характеристики элементов гидротурбин при различных условиях закрепления, свойств материалов и режимов эксплуатации.

Исследования проводились в соответствии с программой работ по гранту Министерства образования и науки Украины и Национальной энергетической программы Украины.

Литература

 Веремеєнко І., Зеленская О., Нагорний І., Кантор Б., Медведовська Т. Оцінка залишкового ресурсу кришок гідротурбін // Машинознавство. – 1999. – № 12. – С. 3 – 8.

2. Веремеєнко І.С., Кантор Б.Я., Єселева О.В., МедведовськаТ.Ф., СтрельніковаО.О., Ржевська І.Є.. Метод оцінки динамічних характеристик зварних конструкцій гідротурбін при взаємодії з рідиною // Совершенствование турбоустановок методами математического и физического моделирования: Сб. науч. тр.: В 2-х т. – Х.: Ин-т пробл. машиностроения им. А.Н. Подгорного НАН Украины. – 2003. – Т. 2. –С. 621–625.

 Бате К. Численные методы анализа и метод конечных элементов / К. Бате, Е. Вилсон. – М.: Наука, 1982. – 448 с.

Поступила в редакцию 17.05.2005

Рецензент: д-р техн. наук, проф. А.С. Кулик, Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков.