УДК 539.3

В.И. ЕРШОВ, З.Г. ЕРШОВА

Тутаевский филиал Рыбинской государственной авиационной технологической академии им. П.А. Соловьева, Россия

УСТОЙЧИВОСТЬ ЦИЛИНДРИЧЕСКИХ ПАНЕЛЕЙ

Исследуется устойчивость цилиндрических панелей со слабозакрепленным прямолинейным краем при осевом сжатии.

оболочка, потеря устойчивости, параметр нагружения, граничные условия

Общая постановка проблемы

Оболочечные конструкции широко используются в различных областях техники. Расчет таких конструкций на устойчивость является составной частью общего расчета на прочность.

Обзор публикаций и анализ нерешенных проблем. Общие вопросы устойчивости оболочек разработаны Н.А. Алфутовым, Д. Бушнеллом, А.С. Вольмиром и др. Влияние граничных условий на критическую нагрузку при осевом сжатии цилиндрической оболочки рассмотрено в работах В.И. Кожевникова, Б. Альмрота, Х.М. Муштари, Э.И. Григолюка, В.В. Кабанова и др. В настоящей работе рассмотрены случаи, когда один из прямолинейных краев оболочки является слабозакрепленным.

Цель исследований. Целью исследований являлось исследование потери устойчивости цилиндрической панели со слабозакрепленным прямолинейным краем и различными закреплениями второго прямолинейного края.

Решение проблемы

Рассматривается устойчивость цилиндрической панели со слабо закрепленным прямолинейным краем при осевом сжатии (рис. 1). Криволинейные края x = 0, x = l при этом предполагаются шарнирно опертыми. Другие способы закрепления криволинейных краев, рассмотренных в [5]. Учитывается взаимное влияние закрепления краев $\phi = 0$ и $\phi = \phi_0$.

Рис. 1. Расчетная схема

В качестве уравнений устойчивости используется система уравнений из [1], записанная в безразмерном виде

$$\mu^{2} \Delta \Delta w - 2\lambda \partial^{2} w / \partial x^{2} - \partial^{2} \Phi / \partial x^{2} = 0; \qquad (1)$$
$$\mu^{2} \Delta \Delta \Phi + \partial^{2} w / \partial x^{2} = 0,$$

где $\Delta = \partial^2 / \partial x^2 + \partial^2 / \partial \phi^2$; $T_1 = -2\lambda E h \mu^2$; $\mu^4 = h^2 / \left[l 2 (l - \nu^2) R^2 \right]$; $0 \le x \le l = L/R$.

Здесь w – прогиб, Φ – функция усилий; x – безразмерная длина образующей; φ - угол в окружном направлении; E, v, h – модуль Юнга, коэффициент Пуассона и толщина оболочки; μ – малый параметр; λ – параметр нагружения, классическое критическое значение которого для круговой цилиндрической оболочки $\lambda_{\kappa p} = 1$ получено Лоренцем и Тимошенко в [2, 3] и соответствует усилию сжатия

$$T = 2Eh\mu^2 = \frac{Eh^2}{\sqrt{3(1-\nu^2)R}}.$$

Решение системы (1) ищем в виде

$$w(x,\phi) = \sum_{k=1}^{8} C_k w_k \exp\left\{\frac{i}{\mu}(px + q_k \phi)\right\}.$$
 (2)

Здесь $p = n\pi\mu/l$, $n = 1, 2, 3, ..., w_k$ – фиксированная постоянная, в дальнейшем $w_k = 1$, q_k – корни уравнения

$$\left(p^{2}+q_{k}^{2}\right)^{4}-2\lambda p^{2}\left(p^{2}+q_{k}^{2}\right)^{2}+p^{4}=0. \tag{3}$$

Остальные неизвестные функции (Φ , u, v, γ_2 , T_2 , S, Q_{2*} , M_2) ищем в том же виде (2), заменяя соответственно w на Φ , u, v, γ_2 , T_2 , S, Q_{2*} , M_2 (индекс опущен). После соответствующих преобразований получаем

$$\Phi = \frac{p^2 w}{\left(p^2 + q^2\right)^2}; \quad T_2 = -\frac{Eh}{R} p^2 \Phi; \quad S = \frac{Eh}{R} pq\Phi;$$

$$Q_{2*} = \frac{Eh\mu^2}{R} \left(q^3 + (2 - v)p^2q - 2\lambda qt\right)i;$$

$$\gamma_2 = \frac{qw}{i\mu R}; \quad M_2 = -Eh\mu^2 \left(q^2 + vp^2\right)w; \quad (4)$$

$$u = \frac{\mu p \left(vp^2 - q^2\right)w}{i \left(p^2 + q^2\right)^2}; \quad v = \frac{\mu q \left(q^2 + (2 + v)p^2\right)w}{i \left(p^2 + q^2\right)^2}.$$

$$1$$

Рис. 2. Параметр нагружения при осевом сжатии цилиндрической панели со слабозакрепленным прямолинейным краем: 1 – 0000; 2 – 0001; 3 – 0100; 4 – 0101; 5 – 0010; 6 – 1000; 7 – 1100

1

p

0

Подставляя решение (2) в граничные условия при $\phi = 0$ и $\phi = \phi_0$, получаем систему восьми уравнений относительно C_k . Определяем λ , приравнивая к нулю определитель системы

$$\Delta(\lambda, p) = 0. \tag{5}$$

Рассматривается шестнадцать вариантов граничных условий, для которых равны нулю обобщенные перемещения или соответствующие обобщенные усилия. Используется краткая запись граничных условий из нулей и единиц, приведенная в [4].

В [4] показано, что снижение критической нагрузки для полубесконечной в окружном направлении оболочки дают шесть вариантов граничных условий:

$$T_{2} = S = Q_{2*} = M_{2} = 0 \quad (0000) \quad \lambda_{0} = 0,113;$$

$$T_{2} = u = Q_{2*} = M_{2} = 0 \quad (0100) \quad \lambda_{0} = 0,223;$$

$$T_{2} = S = Q_{2*} = \gamma_{2} = 0 \quad (0001) \quad \lambda_{0} = 0,223;$$

$$T_{2} = u = Q_{2*} = \gamma_{2} = 0 \quad (0101) \quad \lambda_{0} = 0,419;$$

$$T_{2} = S = w = M_{2} = 0 \quad (0010) \quad \lambda_{0} = 0,809;$$

$$v = S = Q_{2*} = M_{2} = 0 \quad (1000) \quad \lambda_{0} = 0,809.$$
(6)

Незакрепленный край $\varphi = 0$ дает девятикратное снижение критической нагрузки. Наименее жесткими являются закрепления u = 0 или $\gamma_2 = 0$, наиболее жесткими v = 0 или w = 0. Результаты вычислений параметра нагрузки $\lambda = \lambda(p)$, полученные в [4], приведены на рис. 2. Здесь кривая 7 соответствует еще одному варианту граничных условий

$$u = v = Q_{2^*} = M_2 = 0 \quad (1100), \qquad (7)$$

для которого возможна локализованная вблизи $\varphi = 0$ форма потери устойчивости, а $\lambda(0) = 1$. Для остальных шести вариантов граничных условий функции $\lambda(p)$ монотонно возрастают с ростом p, т.е. потеря устойчивости происходит при $p = \pi \mu/l$.

В связи с результатами, полученными в [4], для края $\varphi = 0$ рассматриваются шесть вариантов граничных условий, перечисленных в (6), а для края $\varphi = \varphi_0$ такие из оставшихся шестнадцати, что край $\varphi = 0$ является не менее слабым в смысле (6). При этом исследуется зависимость критической нагрузки от длины оболочки в продольном и окружном направлениях. Параметр нагружения λ получен численно для *p* равного от 0,1 до 1 с шагом 0,1, $S = \varphi_0/\mu$ при этом меняется от 1 до 35. Некоторые результаты расчетов приведены на рис. 3 – 5.

Для $\phi_0/\mu >> 1$ и при p << 1 значения параметра λ совпадают с λ_0 , полученными в [4] и приведен-

ными в (6) и не зависят от вида граничных условий при $\phi = \phi_0$, а зависимость $\lambda(p, s)$ при $\phi_0/\mu >> 1$ соответствует рис. 2.

Рис. 3. Параметр нагружения λ при p = 0,1для граничных условий: на краю $\phi = 0 - 0000$; на краю $\phi = \phi_0 - 1 - 0000$; 2 - 0001; 3 - 0100; 4 - 0101; 5 - 1000; 6 - 1001; 7 - 1100; 8 - 1101

Рис. 4. Параметр нагружения λ при p = 0,1для граничных условий: на краю $\varphi = 0 - 0000$; на краю $\varphi = \varphi_0 - 1 - 0010$; 2 - 0110; 3 - 1010; 4 - 1110; 5 - 0011; 6 - 0111; 7 - 1011; 8 - 1111

Рис. 5. Параметр нагружения λ при p = 0,5для граничных условий: на краю $\varphi = 0 - 0000$; на краю $\varphi = \varphi_0 - 1 - 0000, 0001; 2 - 0100, 0101;$ 3 - 1000, 1001; 4 - 1100, 1101; 5 - 0010; 6 - 0110;7 - 1010, 1110; 8 - 0011; 9 - 0111; 10 - 1011; 11 - 1111

Назовем свойства зависимостей $\lambda(p,s)$, общие для всех 6 рассматриваемых на краю $\phi = 0$ гранич-

ных условий (6).

1. Как и должно быть согласно минимаксному свойству собственных значений, более жестким граничным условиям соответствуют большие значения λ . Для жесткой заделки (1111) края $\varphi = \varphi_0$ с ростом s функция $\lambda(p,s)$ монотонно убывает (для других вариантов граничных условий при $\varphi = \varphi_0$ это не как).

2. Для рассматриваемых 6 вариантов граничных условий при $\varphi = 0$ и для всех граничных условий при $\varphi = \varphi_0$ функция $\lambda(p,s)$ растет вместе с p, т.е. критическая нагрузка убывает при увеличении длины панели. При этом в продольном направлении образуется одна вмятина. Это свойство не является общей закономерностью. Например, если все четыре края панели закреплены шарнирно, для удлиненной панели критической нагрузке соответствует форма с несколькими волнами в продольном направлении с образованием вмятин, близких к квадратным.

3. Большинство кривых $\lambda(p, s)$ являются гладкими функциями s (т.е. ширины панели), однако кривые $\lambda(p, s)$, соответствующие одинаковым граничным условиям при $\varphi = 0$ и при $\varphi = \varphi_0$, имеют при некоторых значениях s угловые точки. Дело в том, что для одинаковых граничных условий собственные функции краевой задачи делятся на четные и нечетные относительно середины панели $\varphi = \varphi_0/2$, причем для одних значений *s* меньшее (критическое) значение λ соответствует четной форме, а для других – нечетной.

4. С ростом ширины панели (параметра s) кривые $\lambda(p,s)$ неограниченно приближаются к значениям $\lambda_0(p)$, показанным на рис. 2. Скорость этого приближения зависит как от граничных условий, так и от величины p.

5. При малых значениях *s* и *p* кривые $\lambda(p, s)$, соответствующие различным граничным условиям при $\phi = \phi_0$, разбиваются на группы, внутри которых происходит сближение кривых при $s \rightarrow 0$. При этом

для одних групп условий функции $\lambda(p,s)$ стремятся к нулю вместе с s, а для других – неограниченно возрастают.

Рассмотрим теперь отдельно различные случаи закрепления края $\phi = 0$.

На рис. 3 – 5 представлены кривые, соответствующие свободному краю $\varphi = 0$. Эти кривые разбиваются в зависимости от способа закрепления второго края $\varphi = \varphi_0$ на три группы. В первую группу входят граничные условия, для которых $Q_{2*} = 0$, то есть прогибы не ограничены. Это 0000, 0001, 0100, 0101, 1000, 1001, 1100, 1101. Вторая группа граничных условий – 0010, 0110, 1110, 1010, для которых w = 0 и $M_2 = 0$. И, наконец, группа 0011, 0111, 1011, 1111, где w = 0 и $\gamma_2 = 0$.

Рассмотрим граничные условия, образующие первую группу. При $s \rightarrow 0$ значения параметра нагружения для всех восьми граничных условий одинаково. Для узких панелей (при маленьких значениях *s*) параметр нагружения λ имеет одну и ту же величину для граничных условий 0000 и 0001, 0100 и 0101, 1000 и 1001, 1100 и 1101 на крае $\phi = \phi_0$ независимо от длины панели. При увеличении ширины панели кривые, соответствующие этим граничным условиям, разделяются и теперь уже близкие значения параметра нагружения λ получаются для условий 0000 и 0100, 0001 и 0101, 1000 и 1100, 1001 и 1101. И в том, и в другом случае второе граничное условие в паре имеет дополнительное закрепление. При определенной, в зависимости от длины, ширине панели влияние второго края прекращается, то есть все кривые сливаются в одну прямую и параметр нагружения становится постоянным. При увеличении длины панели $p \rightarrow 1$ начальные и конечные значения параметра нагружения постоянно растут.

Во второй группе граничных условий снижение значений параметра нагружения начинается только при s > 1, независимо от длины панели. При увеличении *s* происходит попарное сближение кривых 0010 и 0011, 0110 и 0111, 1010 и 1011, 1110 и 1111.

Поведение кривых для граничных условий 0001, 0100 и 0101 на крае $\phi = 0$ соответствует поведению

кривых для граничных условий 0000. Однако для граничных условий 0100 и 0101 при $s \rightarrow 1$ сближение кривых, образующих первую группу, хотя и наблюдается, но значения параметра λ совпадают при этом для условий 0100, 0101, 1000, 1001 и для условий 1100, 1101, отличаясь при этом друг от друга. Причем это характерно для любых значений р. Для граничного условия 0001 на крае $\varphi = 0$ подобная картина наблюдается только при больших значениях *р*.

Для третьей группы граничных условий снижение параметра нагружения происходит для p = 0,1при s > 6, для 0,1 при <math>s > 4, для p > 0,4при s > 3.

Для условий 0010 и 1000 снижение параметра нагрузки значительно меньше, четкого разбиения на три группы граничных условий на втором краю не наблюдается и влияние второго края прекращается только при $s \ge 25$.

Выводы

Объяснение поведения кривых на рис. 3 – 5 можно получить, проведя асимптотический анализ узких и широких панелей.

Аналогичный анализ можно провести и для исследования колебаний.

Литература

1. Григолюк Э.И., Кабанов В.В. Устойчивость оболочек. – М.: Наука, 1978. – 360 с.

2. Lorenz R. Phys. Z. 1911. Bd. 12, N 7, P. 242-260.

Гольденвейзер А.Л. Теория тонких оболочек.
 – М.: Наука, 1976. – 512 с.

Товстик П.Е. Устойчивость тонких оболочек.
 М.: Наука, Физматлит, 1995. – 320 с.

5. Ершов В.И., Ершова З.Г. Устойчивость цилиндрических панелей при различных закреплениях краев // Авіаційно-космічна техніка і технологія. – Х., 2003. – Вип.5 (40). – С. 68 – 70.

Поступила в редакцию 31.05.2005

Рецензент: д-р техн. наук А.Л. Михайлов, ОАО «НПО «Сатурн», Рыбинск, Россия.