УДК 629.7.036.7

Н.В. БЛИНОВ, Ю.М. ГОЛОВИН, О.А. ГОРШКОВ, Е.Н. ДЫШЛЮК, А.А. ШАГАЙДА

ФГУП "Исследовательский Центр им. М.В. Келдыша", Россия

СПЕКТРОСКОПИЧЕСКИЕ ИССЛЕДОВАНИЯ СТРУИ ХОЛЛОВСКОГО ДВИГАТЕЛЯ С ЦЕЛЬЮ ОПРЕДЕЛЕНИЯ СКОРОСТИ ЭРОЗИИ УСКОРИТЕЛЬНОГО КАНАЛА В ХОДЕ ДЛИТЕЛЬНЫХ РЕСУРСНЫХ ИСПЫТАНИЙ

Представлен метод определения скорости эрозии керамического ускорительного канала холловского двигателя в ходе ресурсных испытаний. Проведено сравнение результатов определения скорости эрозии спектроскопическим методом с результатами прямых измерений.

холловский двигатель, спектроскопия, оптическая диагностика, эрозия, ресурс, корональная модель

Введение

Методы бесконтактной оптической диагностики струи холловского двигателя (ХД) вызывают все больший интерес в последнее время. Одним из направлений оптической диагностики стало исследование эрозии ускорительного канала двигателя.

Эрозия стенки ускорительного канала – основная причина, ограничивающая ресурс холловского двигателя. Этот процесс вызван воздействием высокоэнергитичных ионов струи ХД на материал стенки ускорительного канала.

Определение ресурса ХД чрезвычайно дорогая и трудоёмкая задача. В настоящее время для определения ресурса проводятся длительные испытания. Продолжительность таких испытаний достигает 5 – 10 тысяч часов, а затраты могут быть соизмеримы с затратами на создание самого изделия. Одной из важнейших задач при проведении ресурсных испытаний является определение скорости эрозии ускорительного канала.

Оптическая диагностика – это один из лучших способов, позволяющих оценивать скорость эрозии ускорительного канала непосредственно во время работы двигателя, не влияя на остальные его характеристики. Кроме того, сведения о скорости эрозии имеют большое значение при выборе оптимального режима работы двигателя. Несмотря на важность таких работ, спектроскопические исследования двигателей с керамическим ускорительным каналом с целью определения скорости эрозии не получили широкого развития.

1. Постановка задачи

Цель данной работы – исследование возможности определения скорости эрозии ускорительного канала ХД в ходе ресурсных испытаний.

Существуют два основных типа ХД. В стационарном плазменном двигателе (СПД) используются керамические стенки ускорительного канала (как правило, боросил – BNSiO₂), а в двигателе с анодным слоем (ДАС) – металлические.

Исследования с целью определения скорости эрозии ускорительного канала холловского двигателя проводились в работах [1 – 4]. В работе [1] была показана принципиальная возможность обнаружения линий элементов керамического ускорительного канала (BI 249,68; 249,77 нм) в плазменной струе СПД. В работах [2, 3] был представлен метод определения скорости эрозии металлических стенок ускорительного канала ДАС и проведено исследова-

© Н.В. Блинов, Ю.М. Головин, О.А. Горшков, Е.Н. Дышлюк, А.А. Шагайда АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2005, № 9 (25) ние скорости распыления в различных режимах работы двигателя. В работе [4] исследовалось распыление ускорительного канала СПД. Недостатком перечисленных выше работ является то, что скорость эрозии, определенная путем спектроскопических измерений, не была сравнена со скоростью эрозии определенной другим независимым методом.

2. Метод определения скорости эрозии ускорительного канала холловского двигателя

Интенсивность излучения плазменной струи определяется локальными параметрами разряда (плотность, распределение частиц по энергиям). Интерпретацию интенсивности излучения линий можно проводить только в рамках определенной столкновительно – излучательной модели. В условиях, характерных для холловских двигателей, хорошим приближением является модель коронального равновесия, или иначе – корональная модель [5, 6].

Согласно корональной модели, интенсивность излучения линии при переходе с уровня *u* на уровень *l* вычисляется по формуле:

$$I_{ul} = \frac{h\nu}{4\pi} \frac{A_{ul}}{\sum_{j} A_{uj}} n_e n_a Q(\varepsilon), \qquad (1)$$

где *h* – постоянная Планка;

v – частота перехода с уровня u на уровень l,

*A*_{ul} - коэффициент Эйнштейна для спонтанного перехода с уровня и на уровень *l*;

n_e, *n_a* – плотности электронов и излучающих атомов соответственно;

 $Q(\varepsilon) = \langle \sigma_{ex}(\varepsilon) v_e \rangle$ – коэффициент скорости возбуждения – эффективное сечение возбуждения уровня, усредненное по функции распределения электронов по скоростям.

Для линий распыленных элементов - линий "маркеров" и линий нейтрального ксенона – "опорных" линий в рамках корональной модели имеем:

$$I_s = C_s \cdot n_e \cdot n_s \cdot Q_s(\varepsilon); \qquad (2)$$

$$I_{XeI} = C_{XeI} \cdot n_e \cdot n_{XeI} \cdot Q_{XeI}(\varepsilon) , \qquad (3)$$

где индекс *s* обозначает распыленные атомы;

XeI – нейтральные атомы ксенона;

*C*_s и *C*_{Xel} – константы.

В отличие от работы [2], где в качестве опорных линий были выбраны линии ионизованного ксенона, в данной работе используются линии нейтрального ксенона. Действительно, в условиях квазинейтральности плазменной струи ХД $n_i \approx n_e$ и $I_{Xell} \sim n_e^2$, осуществлять контроль за плотностью нейтральных частиц – n_{Xel} проще.

Определив коэффициент газовой эффективности – α [7] ($\alpha = m_{ai}/m_a$ – отношение числа атомов, выходящих из двигателя ионизованными, к числу атомов, поступающих в анод), и зная то, как меняется расход рабочего газа в процессе ресурсных испытаний, можно определить изменение плотности атомов нейтральной компоненты рабочего газа

$$n_{XeI} \propto m_a \cdot (1-\alpha)$$
. (4)

Предполагая, что плотность распыляемых атомов однородно распределена по выходному сечению двигателя получим:

$$n_s = \frac{R}{v_s \cdot S},\tag{5}$$

где R – скорость эрозии – количество распыляемых атомов в единицу времени;

v_s – средняя скорость потока распыляемых атомов на срезе двигателя;

S – площадь ускорительного канала на срезе двигателя.

Предполагая, что средняя скорость потока распыляемых атомов ускорительного канала при небольших изменениях режима работы двигателя меняется не существенно, а *S* практически не изменяется, получим:

$$R \propto n_s$$
. (6)

Учитывая формулы (2) – (4), (6), получим следующее соотношение для определения скорости эрозии ускорительного канала:

$$R \propto m_a \cdot (1 - \alpha) \cdot \frac{I_s}{I_{XeI}} \cdot \frac{Q_{XeI}(\varepsilon)}{Q_s(\varepsilon)}$$
(7)

или

$$R = R_n \cdot \frac{m_a \cdot (1 - \alpha)}{m_{a_n} \cdot (1 - \alpha_n)} \cdot \frac{I_s}{I_{s_n}} \times \\ \times \frac{I_{XeI_n}}{I_{XeI}} \cdot \frac{Q_{XeI}(\varepsilon)}{Q_{XeI_n}(\varepsilon)} \cdot \frac{Q_{s_n}(\varepsilon)}{Q_s(\varepsilon)},$$
(8)

где индекс *n* – означает номинальный режим работы двигателя, скорость эрозии в котором известна.

Коэффициент скорости возбуждения – $Q(\varepsilon)$ зависит от функции распределения электронов по энергиям.

Для контроля за функцией распределения электронов использовались результаты работы [8], где приводится методика определения температуры электронов в плазменной струе холловских двигателей.

В [8] была смоделирована зависимость отношения интенсивности линии XeI 823,16 нм к интенсивности линии XeI 828,01 от температуры электронов (в предположении о максвелловском распределении электронов).

Это удалось сделать, так как сечения возбуждения этих линий сильно отличаются в диапазоне до 30 эВ.

Изменения температуры электронов в ходе ресурсных испытаний составили менее 0,3 эВ.

В таких малых пределах изменения температуры электронов $Q(\varepsilon)$ можно считать константой и формула для определения скорости эрозии упрощается:

$$R = R_n \cdot \frac{m_a \cdot (1 - \alpha)}{m_{a_n} (1 - \alpha_n)} \cdot \frac{I_s}{I_{s_n}} \cdot \frac{I_{XeI_n}}{I_{XeI}} \,. \tag{9}$$

Определив скорость эрозии в течение нескольких первых часов работы двигателя (как правило, хватает первых 50 часов) каким-либо прямым методом (измерением профиля ускорительного канала или взвешиванием изолятора), в дальнейшем скорость эрозии можно определять, используя соотношение (9).

3. Экспериментальное оборудование

Эксперимент проводился на криогенновакуумной установке КВУ-90, находящейся во ФГУП "Центр Келдыша" (рис. 1). Камера имеет объем 90м³ (длина 8,3 м, диаметр 4,2 м). Система откачки камеры, состоит из систем предварительной и криогенной откачки. Криогенные насосы позволяют достигать высокой степени и чистоты вакуума (остаточное давление в камере ~ 10⁻⁶ Торр).

Рис.1. Криогенновакуумная установка КВУ-90

Для осуществления оптических измерений и наблюдений за работой двигателя камера оснащена кварцевым окном, благодаря чему удается проводить измерения в ультрафиолетовой области спектра.

Изображение плазменной струи ХД фокусировалось на входную щель спектрографа NSI-600. Сигнал с ССD линейки поступал на компьютер, где регистрировался с помощью специальной программы обработки данных

4. Результаты экспериментов и их анализ

Измерения скорости эрозии спектроскопическим методом были проведены в течение первых 150 ч (начиная с 10 часа работы двигателя) 500 часовых ресурсных испытаний лабораторной модели холловского двигателя мощностью 900 Вт, выполненных во ФГУП "Центр Келдыша". Рабочие параметры двигателя (напряжение разряда, ток разряда) в ходе ресурсных испытаний поддерживались на заданном уровне.

В ходе измерений фиксировались интенсивности четырех линий распыляемых веществ (BI 249,68; B1 249,77; SiI 251,61; SiI 288,16 нм), трех линий XeII (247,55; 248,91; 484,43 нм) и двух линий XeI (823,16; 828,01 нм). На рис. 2 представлена часть спектра, на которой присутствуют интенсивные линии распыляемых веществ.

Рис. 3. Интенсивности линий распыляемых веществ в ходе ресурсных испытаний

Результаты измерения интенсивностей линий распыляемых веществ в ходе ресурсных испытаний представлены на рис. 3. Характер изменения интенсивностей этих линий одинаков и различия укладываются в пределах ошибки измерений. Таким образом, в качестве линии – "маркера" ресурса была выбрана линия, обладающая максимальной интенсивностью (BI 249,77 нм).

Изменения интенсивностей остальных линий в ходе ресурсных испытаний представлены на рис. 4.

Рис. 4. Изменения интенсивностей линий XeI и XeII в ходе длительных ресурсных испытаний

После 100 часов работы двигателя интенсивности всех линий резко упали, что связано со смещением оптической оси системы измерений. Кроме того, изменилось соотношение интенсивностей линий 823/828 нм, что говорит об изменении температуры электронов (другая область у среза двигателя). В соответствии с результатами работы [8], температура изменилась с ~4,4 до ~4,7 эВ. В таких малых пределах изменений температуры, с хорошей точностью можно считать, что коэффициент скорости эрозии не зависит от температуры электронов.

В процессе ресурсных испытаний проверка пропускной способности оптической системы не осуществлялась. Так как пропускающая способность материала, возможно, зависит от длины волны, именно запыление кварцевого окна могло привести к отличию интенсивностей линий XeII, находящихся в различных диапазонах спектра (интенсивность линий 247,55 и 248,91 нм упала по сравнению с интенсивностью линии 484,43 нм). Для учета этого эффекта была введена поправка на интенсивности линий находящихся в ультрафиолетовом диапазоне. Разумеется, эти предположения нуждаются в проверке, которая будет проведена в ближайшее время. На рис. 5 приводятся результаты сравнений скоростей эрозии ускорительного канала ХД, полученные в ходе длительных ресурсных испытаний прямым и оптическим методом.

Рис. 5. Сравнение скоростей эрозии ускорительного канала, определенных прямым и оптическим методом

Заключение

Прямой метод измерения показал, что в течение первых 150 часов работы двигателя скорость эрозии уменьшилась на 30%. Результаты представленной методики определения скорости эрозии ускорительного канала двигателя в ходе ресурсных испытаний согласуются с результатами прямых измерений в пределах погрешности измерений. Дальнейшее развитие данной методики связано, прежде всего, с использованием более точных спектроскопических приборов и контролем за пропускающей способностью оптической системы.

Детальное рассмотрение задачи определения скорости эрозии, применительно к другим задачам, включающим в себя сильные изменения режимов работы двигателя, приводит к необходимости создания более точной (чем корональная модель) столкновительно – излучательной модели и учету различия сечений возбуждения рассматриваемых переходов.

Литература

1. Minea T.M., Bretagne J., Magne L., Pagnon D., Touzeau M. "Spectroscopic Evidence of the Ceramics Erosion in a Stationary Plasma Thruster". Second European Spacecraft Propulsion Conference, 27-29 May, 1997.

2. Karabadzhak G.F. "Semi-Empirical Method for Evaluation of a Xenon Operating Hall Thruster Erosion Rate Through Analysis of its Emission Spectra". International Conference on Space Propulsion 2000.

3. Karabadzhak G.F. and A.V. Semenkin "Evaluation of a Xenon Operating Hall Thruster Body Erosion Rate Through Analysis of its Optical Spectra". 37th Joint Propulsion Conference, 9-11 July 2001 Salt Lake City, Utah AAIA-01-34519.

4. Pagnon D., Lasgorceix P. and Touzeau M. "Control of the Ceramic Erosion by Optical Emission Spectroscopy: Parametric Studies of PPS1350-G and SPT100-ML" 40th Joint Propulsion Conference, 11-14 July 2004 Fort Lauderdale, Florida AAIA-2004-3773.

5. Грим Г. Спектроскопия плазмы. – М., 1969.

6. Meezan N.B., Schmidt D.P., Hargus W.A., Capelli Jr. and M.A. "Optical Study of Anomalous Electron Transport in a Laboratory Hall Thruster". 35th Joint Propulsion Conference, 20-24 June 1999 Los-Angeles, CA, AAIA-99-2284.

7. Blinov N.V., Gorshkov O.A., Rizakhanov R.N., Shagayda A.A. "Hall-Effect Thruster with High Specific Impulse". – Proc. 4th Intern. Spacecraft Propulsion Conf. Sardinia, Italy, 2-9 June 2004.

 Karabadzhak G.F., Chiu Y. –H., Williams S. and Dressler R.A. "Hall Thruster Optical Emission Analysis Based on Single Collision Luminescence Spectra". 37th Joint Propulsion Conference, 9-11 July 2001 Salt Lake City, Utah AAIA-01-34523.

Поступила в редакцию 31.05.2005

Рецензент: д-р техн. наук Ю.М. Кочетков, ФГУП "Исследовательский Центр им. М.В. Келдыша", Москва.