УДК 621.73.043.011

М.Н. БАГМЕТ¹, И.А. ЖДАНОВ², С.К. КОЛТУН¹

¹Национальный аэрокосмический университет им. Н. Е. Жуковского "ХАИ", Украина ²Харьковский машиностроительный завод "ФЭД", Украина

МЕТАЛЛОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ МАТЕРИАЛА ЛОПАТОК ПОСЛЕ ХОЛОДНОГО ВАЛЬЦЕВАНИЯ

В статье приведены результаты исследований образцов рентгеноструктурным методом и результаты исследований микроструктуры, микротвердости, остаточных напряжений после холодного вальцевания

холодное вальцевание, микроструктура, наклеп, микротвердость, титановые сплавы, остаточные напряжения, рентгеноструктурный метод

Введение

Одним из прогрессивных технологических процессов изготовления лопаток без припуска по перу на механическую обработку является холодное вальцевание профиля на специальных установках.

1. Постановка задачи и цель исследования

Исследование процесса вальцевания производилось на плоских образцах из сплава ВТ8 и стали ЭП479Ш, изготовленных из прутков и прошедших соответствующую термическую обработку. Геометрические размеры образцов (толщина) выбраны исходя из размеров лопаток по толщине в пределах 0,7 – 2,9 мм.

Вальцевание производилось на установке УВЛ-100 со степенью обжатия в пределах 4,3 – 32,4 %.

Для обеспечения повышенного ресурса работы лопаток важное значение имеют поверхностные остаточные напряжения, т.к. в большинстве случаев разрушение лопаток начинается с их поверхности. Поверхностные остаточные напряжения возникают в результате взаимодействия инструмента или среды с поверхностью обрабатываемой детали. Поэтому исследование поверхностных напряжений при отработке новых технологических процессов изготовления лопаток является необходимым. В данной статье приведены результаты исследований микроструктуры, микротвердости, остаточных напряжений образцов и их исследование рентгеноструктурным методом после холодного вальцевания.

2. Металлографические исследования материала лопаток после холодного вальцевания

2.1. Исследование микроструктуры

Вырезку и обработку образцов производили таким образом, чтобы исключить возможность их нагрева, а, следовательно, и температурных влияний.

Рис. 1. Образцы для: А – измерения остаточных напряжений; Б – рентгеноструктурного анализа; В – измерения микротвердости и определения микроструктуры

Микроструктура вальцовочных образцов из сплава BT8 со степенью обжатия в пределах 4 – 19% аналогична микроструктуре вальцованных в закаленном состоянии лопаток, прошедших закалку с

© М.Н. Багмет, И.А. Жданов, С.К. Колтун АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2005, № 9 (25) нагревом при температуре 920 \pm 10 °C в области фазы (α + β). Микроструктура состоит из равноосной смеси α и метастабилъной β -фазы. Следов пластической деформации в виде изменения формы структурных фаз в направлении прилагаемых в процессе вальцевания нагрузок, не обнаружено.

Микроструктура образцов из стали ЭП479Ш, вальцованных со степенью обжатия 4,4 – 32,4% идентична микроструктуре термообработанных после вальцевания лопаток и состоит из двух фаз: сорбита ориентированного по бывшим до термообработки иглам мартенсита и δ-феррита, вытянутого в направлении вальцевания. Дисперсность и травимость основной фазы – сорбита по толщине образцов – равномерная. Количество и расположение второй фазы δ-феррита не зависит от степени обжатия.

2.2. Исследование наклепа

Исследование наклепа вальцованных образцов производилось рентгеновским методом и методом измерения микротвердости. Измельчение блоков кристаллов и возникновение остаточных внутренних микронапряжений (напряжений II рода) в результате холодной пластической деформации большинства металлов вызывает расширение линий на рентгенограммах.

Рентгенографическое определение наклепа исследуемых образцов производилось по эффекту расширения линий, соответствующих большим углам Вульфа-Брегга. При наличии микронапряжений каждая система атомных плоскостей кристаллов с одинаковыми индексами (*hkl*) имеет вместо строго определенного межплоскостного расстояния d, межплоскостное расстояние, лежащее в пределах d+ Δd .

Соответствующие этим межплоскостным расстояниям значения углов скольжения будут лежать в пределах $\theta + \Delta \theta$, что проявляется в размытии (расширении) линий на рентгенограмме. Рентгеновская съемка образцов производилась на дифрактомере УРС50И-М с применением Cu_{ka}-излучения для сплава ВТ8 и Fe_{ka}-излучения для стали ЭП479Ш.

Монохроматизация первичного пучка лучей осуществлялась отражением от плоскостей (III) упруго изогнутого монокристалла германия.

Вследствие значительной текстуры в образцах интенсивность линий $(213)_{\alpha-Ti}$ и $(220)_{\alpha-Fe}$ при обычном положении образца оказалась очень слабой. Для увеличения интенсивности отражений нулевое положение держателя было смещено на 45° относительно нулевого положения держателя счетчика.

Ширина линий (213)_{α-ті} образцов из сплава ВТ8 и (220)_{α-Fe} образцов из стали ЭП479Ш измерялась на середине высоты максимума. Рентгенограммы вальцованного и невальцованного участков образца из сплава ВТ8 приведены на рис. 2 и 3.

Рис. 2. Рентгенограмма вальцованного участка

Рис. 3. Рентгенограмма невальцованного участка

Для исследования микротвердости образцов по глубине снятие слоя на образцах из сплава BT8 производилось химическое травление в растворе азотной и плавиковой кислот, на образцах из стали ЭП479Ш – электролитическое полирование в растворе серной и фосфорной кислот, измерение микротвердости проводилось на приборе ПМТ-3 с автоматическим нагружением при нагрузке 50 г на косых шлифах с углом скоса $3 - 4^{\circ}$.

Результаты измерения рентгеновских линий и микротвердости приведены в табл. 1 и 2.

Таблица 1

Ширина линий (220) и микротвердость вальцованных образцов из стали ЭП479Ш

			1 1			
N⁰		Толщи-	Сте-	Глу-	Ширина	Микро-
об	Толщи-	на	пень	бина	линий,	твердость,
pa	на	образца	обжа	слоя,	рад×10 ²	$H/m^2 \cdot 10^2$
3	образца	после	тия,	МКМ	-	
цо	до	валь-				
в	валь-	цовки,	%			
	цовки,	MM				
	MM					
1	2	3	4	5	6	7
				0	2,07	32,2
1	0.72	0,61	16,4	55	2,01	33,2
1	0,73			220	2,10	36,2
				330	1,92	36,5
				0	2,10	34,0
2	0.00	0.65	27.0	55	2,00	35,4
2	0,89	0,05	27,0	220	2,07	38,3
				350	1,83	39,8
				0	2,05	33,8
2	1.05	0.71	22.4	55	2,07	34,9
3	1,05	0,71	32,4	220	2,05	39,8
				385	2,07	45,3
				0	2,07	33,1
4	1,41	1,14	19,1	55	2,01	31,5
				220	2,05	40,5
				440	2,10	45,3
				550	1,87	53,6
5	1,51	1,13	25,2	0	2,05	33,8
				55	1,77	34,9
				220	1,02	36,9
				440	1,73	41,9
				600	1.03	13.1

Примечание: ширина линий невальцованного участка образцов (1,34 – 1,44) рад× 10^2 ; микротвердость – (36,5 – 38,9) Н/м²· 10^2 для образцов 1 и 2; (36,5 – 41,8) Н/м²· 10^2 для образцов 3, 4 и 5.

2.3. Исследование поверхностных остаточных напряжений

Остаточные напряжения, которые уравновешиваются в объеме всей детали или ее части (макронапряжения, напряжения I рода), оказывают значительное влияние на эксплуатационную надежность деталей.

Таблица 2

Ширина линий (213) и микротвердость

вальцованных образцов из сплава ВТ8							
N⁰	Толщи-	Толщи-	Сте-	Глу-	Ширина	Микро-	
об	на	на	пень	бина	линий,	твердость,	
pa	образца	образца	обжа	слоя,	рад×10 ²	$H/m^2 \cdot 10^2$	
3	ДО валь-	после	тия,	мкм			
В	цовки.	цовки.	%				
	ММ	мм					
1	2	3	4	5	6	7	
	1,49	1,23	17,5	0	3,02	58,3	
1				55	2,73	49,1	
				330	2,39	41,9	
				660	2,54	36,0	
	1,60	1,40	12,5	0	2,98	34,6	
				55	2,38	47,1	
2				550	2,35	41,9	
				770	2,49	37,5	
				0	2,87	58,3	
			16.4	55	2,70	49,1	
3	2,20	1,84		330	2,35	45,3	
-	_,	<i>,</i>	,	550	2,54	41,9	
				990	2.39	38.5	
				0	2.42	53.5	
				55	1.87	47.1	
4	2,11	2,02	43.0	330	1.82	43.3	
			45,0	550	2 01	40.3	
				1100	1.92	38.7	
	2,60		11,5	0	2 70	58.3	
				55	2,70	40.1	
5		2,30		220	2,38	49,1	
				330 880	2,39	40,2	
				000	2,43	24.2	
			26,5	0	2,10	26.2	
	1,70	1,25		220	2,05	30,2	
6				220	2,01	37,5	
				404	2,01	40,2	
				680	2,01	42,2	
	2,51	2,38	52,0	0	1,82	30,2	
				55	1,68	31,5	
7				220	1,64	34,2	
				440	1,84	37,1	
				880	1,62	36,2	
				1320	1,70	36,5	
	2,71	2,27	16,2	0	1,87	30,4	
				55	1,87	32,6	
0				220	1,82	35,5	
8				440	1,77	38,9	
				880	1,87	43,4	
				1265	1,87	38,9	
9	2,90	2,36	18,6	0	2,01	25,0	
				55	1,87	41,9	
				220	1,87	45,3	
				440	2,01	49,1	
				880	2,05	40,4	
				1320	1,87	34,4	
					· · ·	/	

Примечание: ширина линий невальцованного участка образцов (1,44 - 1,63) рад×10²; микротвердость – (30,0 - 31,3) H/м²·10². Таблица 3

Определение поверхностных напряжений на образцах производилось механическим методом на приборе ПИОН-2 по методике НИАТ.

Снятие поверхностных слоев с образцов производилось электрическим травлением по режимам (табл. 3)

Матери-	Состав элек-	Матери-	Плот-	Ско-
ал	тролита	ал	ность	рость
образца		катода	тока,	травле-
•			A/cm ²	ния,
				г/мин
Сталь	$H_3PO_4 - 240 \text{ cm}^3$			
ЭП4/9Ш	$HNO_3 - 10 \text{ cm}^3$	Свинец	1,4-1,5	2,2
	$H_2O - 750 \text{ cm}^3$			
Титано-	СО – 450 г			
вый	$H - 100 \text{ cm}^3$	графит	0.6	2.5
сплав	$H_2O - 450 \text{ cm}^3$	1 Papin	0,0	_,5
B.L8				

Режимы электрического травления

Из полученных результатов следует, что наведенные напряжения на вальцованных образцах из стали ЭП479Ш и сплава ВТ8 имеют различный характер. На образцах из сплава ЭП479Ш в поверхностном слое толщиной до 12 микрон и более залегают сжимающие напряжения до 340 МПа. Затем сжимающие напряжения переходят в растягивающие до 250 МПа. На образцах из сплава ВТ8 в поверхностном слое располагаются, в основном, растягивающие напряжения до 480 МПа. Связь между степенью деформации и характером распределения напряжений на образцах не обнаруживается.

В связи с тем, что перо лопатки имеет сложную форму и деформируется при вальцевании неравномерно, следует ожидать, что в отдельных точках лопатки могут быть растягивающие остаточные напряжения больших величин, чем на плоских образцах. Наличие в поверхностном слое значительных по величине растягивающих напряжений является нежелательным для надежной работы лопаток.

С целью стабилизации структуры и наведения в поверхностном слое благоприятных сжимающих напряжений производится термическая обработка и последующая отделочно-упрочняющая обработка рабочих лопаток. Лопатки из сплава ВТ8 после отжига в аргоне при температуре 600 °С подвергаются виброабразивной обработке. В результате на поверхности пера лопаток наводятся сжимающие напряжения, на глубине более 12 микрон растягивающие напряжения не превышают 130 МПа. Лопатки из стали ЭП479Ш подвергаются отпуску при температуре 590 °С и последующей виброабразивной обработке. Перо лопаток I и II ступеней ротора компрессора подвергаются дополнительно упрочнению виброгалтовкой, что наводит в поверхностном слое толщиной не менее 45 микрон сжимающие напряжения в пределах 165-660 МПа. Под слоем сжимающих напряжений растягивающие напряжения не превышают 165 МПа.

Заключение

Результаты исследований показывают, что процесс холодного вальцевания приводит к наклепу пера лопаток на всю толщину, как для лопаток из стали ЭП479Ш, так и для лопаток из сплава ВТ8, что отражается в увеличении микротвердости и размытии рентгеновских линий.

Однако, эффект упрочнения пера лопаток носит неравномерный характер. При этом микроструктура лопаток по всему сечению пера практически не изменяется и соответствует требованиям на готовые детали. Напряженно-деформированное состояние пера лопаток неравномерно с наличием значительных по величине растягивающих напряжений в поверхностном слое. Это приводит к необходимости в целях обеспечения надежной работы лопаток применять стабилизирующие режимы термической обработки и операции отделочно-упрочняющей обработки поверхности.

Поступила в редакцию 25.04.2005

Рецензент: д-р техн. наук, проф. А.Я. Мовшович, ГП "Харьковский научно-исследовательский институт технологии машиностроения", Харьков.