УДК 629.7.03.036.3.001.42

А.В. ОЛЕЙНИК, Н.А. ШИМАНОВСКАЯ

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

СТРУКТУРНО-ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ МОНИТОРИНГОВОЙ МОДЕЛИ ДИНАМИКИ ТЕМПЕРАТУРНЫХ НАПРЯЖЕНИЙ В КРИТИЧЕСКОЙ ТОЧКЕ УЗЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Предложена математическая модель динамики температурных напряжений в точке узла ГТД для системы мониторинга выработки ресурса. Основу модели составляют параметризованные переходные характеристики напряжений при различных уровнях теплоотдачи. Точность обеспечивается параметрической идентификацией модели по конечно-элементной модели высокого уровня. На переходах типа «малый газ – взлетный – малый газ» погрешность расчета пикового значения напряжения в диске турбины составила ~2 МПа.

температурные напряжения, мониторинг ресурса

Точность мониторинга выработки ресурсов авиационных газотурбинных двигателей (ГТД) во многом зависит от точности оперативного расчета температурных напряжений, возникающих в деталях на установившихся и неустановившихся режимах. Создание мониторинговой – легко алгоритмизуемой и одновременно достаточно точной математической модели динамики температурных напряжений в произвольном полетном цикле особенно актуально для двигателей, работающих в быстро изменяющихся условиях – на истребителях, противопожарных и спортивно-пилотажных самолетах и др. В представляемой работе рассматривается структура параметризованной мониторинговой модели температурных напряжений в выбранной точке узла двигателя.

В качестве граничных условий теплообмена для мониторинговых моделей может быть принято допущение о подобии на различных режимах двигателя распределений абсолютной температуры среды (газа и воздуха):

$$T(x_n, y_n, z_n) = \frac{T(x_n, y_n, z_n)_{\delta}}{T_{u_{\delta}}} \cdot T_u$$
(1)

и коэффициентов теплоотдачи:

$$\alpha(x_n, y_n, z_n) = \alpha(x_n, y_n, z_n)_{\delta} \cdot k_{\alpha}, \qquad (2)$$

где x_n, y_n, z_n - координаты точек поверхности дета-

лей;

T_u – измеряемая, «управляющая» тепловыми процессами, температура газа;

 k_{α} — коэффициент подобия режима по теплоотдаче;

индекс «б» отмечает значения величин на некотором «базовом» режиме.

Известны зависимости, связывающие k_{α} с контролируемыми параметрами двигателя: частотой вращения роторов, давлением воздуха, его температурой и другими [1, 2].

Задача расчета компоненты σ тензора локального температурного напряжения в детали узла ГТД в момент τ неустановившегося режима обычно формулируется как квазистатическая задача термоупругости для соответствующей области пространства *V* с нестационарным температурным полем $t(x,y,z,\tau)$. Решение ее при переменных по пространству, но независящих от температуры свойствах материалов, можно представить в виде [3]:

$$\sigma(\tau) = \frac{\beta \cdot E}{1 - 2\mu} \left[\tilde{t}(\tau) - t(\tau) \right], \tag{3}$$

где $t(\tau)$ – локальная температура;

$$\widetilde{t}(\tau) = \int_{(V)} k(x, y, z) \cdot t(x, y, z, \tau) \cdot dv - \text{осредненная}$$

по узлу двигателя температура;

k(*x*,*y*,*z*) – зависящая от пространственного распределения свойств весовая функция;

β, μ, *E* – локальные свойства: коэффициент линейного расширения, коэффициент Пуассона, модуль упругости;

dv – элементарный объем.

Линейность связи (3) температурного напряжения с температурным полем и подобие граничных условий (1), (2) позволяют создавать мониторинговую модель температурного напряжения на основе метода переходных характеристик [4, 5]. Согласно ему температурное напряжение при изменении k_{α} во времени по закону $k_{\alpha} |_{\tau=0}^{\tau}$ находится интегрированием процессов изменения напряжения, порожденных скачками управляющей температуры в предшествующие моменты:

$$\sigma(\tau) = \sigma(0) + \int_{0}^{\tau} G\left(\tau - \eta, k_{\alpha_n} \Big|_{\eta=0}^{\eta}\right) dT_u(\eta) , \qquad (4)$$

где $k_{\alpha_n} \Big|_{\eta=0}^{\eta} = k_{\alpha} \Big|_{\tau=\eta}^{\tau}$; $G(\eta, k_{\alpha_n} \Big|_{\eta=0}^{\eta})$ – переходная характеристика температурного напряжения – его динамика $\sigma(\eta)$ после единичного ступенчатого изменения T_u в момент $\eta = 0$ при изменении k_{α} по закону, заданному функцией $k_{\alpha_n} \Big|_{\eta=0}^{\eta}$;

 $T_u(\tau)$ и $dT_u(\tau)$ – обобщенные функции, содержащие конечные скачки значений.

В случае постоянной теплоотдачи расчет температурного напряжения по формуле (4) требует знания $G(\eta, k_{\alpha})$ – переходной характеристики температурного напряжения при соответствующем постоянном значении k_{α} .

Расчет ее по модели высокого уровня обычно не вызывает затруднений и может быть проведен предварительно. После этого использование формулы (4) обеспечивает практически полное совпадение результатов с расчетами σ(τ) по модели высокого уровня при очевидной простоте алгоритма и малости вычислительных затрат.

Переходную характеристику температурного напряжения при постоянном k_{α} можно интерпретировать как решение несвязанной задачи термоупругости для нестационарного температурного поля, созданного отнулевым ступенчатым измененем T_u , при нулевой начальной температуре и неизменной теплоотдаче, отнесенное к T_u . Решение уравнения теплопроводности для локальной и осредненной температур при перечисленных условиях имеет вид экспоненциальных рядов [6]:

$$t(\tau) = \left[A_0 - \sum_{i=1}^{\infty} A_i \exp\left(-\frac{\tau}{\nu_i}\right) \right] T_u;$$

$$\tilde{t}(\tau) = \left[B_0 - \sum_{i=1}^{\infty} B_i \exp\left(-\frac{\tau}{\nu_i}\right) \right] T_u.$$

Это позволяет, учитывая связь температурного напряжения с температурами (3), представить подобным рядом и переходную характеристику:

$$G(\tau, k_{\alpha}) = \frac{\sigma(\tau, k_{\alpha})}{T_{u}} =$$
$$= C_{0} - \frac{\beta \cdot E}{1 - 2\mu} \sum_{i=1}^{\infty} C_{i} \exp\left(-\frac{\tau}{\nu_{i}}\right).$$
(5)

Для мониторинговых моделей неизвестные параметры C_0 , C_i , v_i можно найти методами параметрической идентификации, обеспечивающими поиск их оценок, минимизирующих интегральную квадратичную функцию невязки переходной характеристики (5) и ее расчета по модели высокого уровня:

$$\begin{split} & \varPhi(C_0...C_i...\nu_i) = \int_0^\infty \bigg\{ G(\tau,k_\alpha) - \frac{\sigma(\tau,k_\alpha)}{T_u} \bigg\}^2 d\tau = \\ & = \int_0^\infty \bigg\{ C_0 - \sum_{i=1}^\infty C_i \exp\left(-\frac{\tau}{\nu_i}\right) - \frac{\sigma(\tau,k_\alpha)}{T_u} \bigg\}^2 d\tau \,. \end{split}$$

Параметр C_0 может быть найден отдельно от остальных на основе расчета по модели высокого уровня температурного напряжения на установившемся режиме:

$$C_0 = \sigma(\infty, k_\alpha) / T_u$$

На рис. 1 показаны переходные процессы окружного температурного напряжения внутри ступицы диска турбины высокого давления двухконтурного турбореактивного двигателя.

Расчет проводился по газодинамическим, тепловым и термопрочностным моделям высокого уровня при температурах газа и воздуха взлетного режима и коэффициентах теплоотдачи различных режимов от малого газа до взлетного.

По сравнению с монотонными процессами локальной температуры, полученными в работе [5], переходные процессы температурных напряжений имеют более сложный, немонотонный вид. Описание их с погрешностью 3...5 МПа требует 4 – 6 экспонент в представлении (5), т.е. на 1 – 3 больше чем потребовалось для описания процессов температуры.

Использование переходных характеристик при постоянной теплоотдаче приводит к значительной погрешности в случаях, когда теплоотдача существенно изменяется до завершения предшествующих переходных процессов.

Необходимость рассчитывать предварительно или в ходе мониторинга переходные характеристики для всевозможных вариантов изменения теплоотда-

Рис. 1. Переходные процессы окружного температурного напряжения в диске турбины при постоянной теплоотдаче:

 $1 - k_{\alpha} = 1$; $2 - k_{\alpha} = 0,75$; $3 - k_{\alpha} = 0,55$; $4 - k_{\alpha} = 0,2$

чи является основной проблемой метода переходных характеристик.

В работе [5] предложен компактный алгоритм получения переходных характеристик при изменении теплоотдачи в ходе процесса из характеристик при постоянной теплоотдаче. Он использовался для переходных характеристик температуры, но может использоваться и для переходных характеристик температурных напряжений.

Расчетные исследования подтверждают асимптотическое подобие переходных процессов температурных напряжений при ступенчато изменяющейся и постоянной теплоотдаче. Если в момент τ_s после начала процесса распределение коэффициентов теплоотдачи ступенчато изменилось от значения $k_{\alpha s}$ до значения k_{α} , то по истечении сравнительно небольшого интервала времени после τ_s процесс протекает как процесс с постоянным, соответствующим значению k_{α} , распределением, приближенный по времени на Δs (рис. 2).

Исследование большого числа переходных процессов при различных значениях τ_s , k_{α} и $\Delta k_{\alpha} = k_{\alpha} - k_{\alpha s}$ позволяет с достаточной точностью описать смещение единой зависимостью, типа

Рис. 2. Асимптотическое подобие переходных процессов окружного температурного напряжения при изменяющейся и постоянной теплоотдаче:

 $1 - k_{\alpha} = 0, 2 \div 1$, изменение при $\tau_s = 60$ с; $2 - k_{\alpha} = 0, 2$; 3 - $k_{\alpha} = 1$; 4 - $k_{\alpha} = 1$, смещение на $\Delta s = 45$ с

$$\frac{\Delta s}{\tau_s} = \varphi \left(\frac{\Delta k_\alpha}{k_\alpha} \right) \approx \xi \frac{\Delta k_\alpha}{k_\alpha} \,. \tag{6}$$

При этом зависимости (6) для переходных характеристик температуры и температурных напряжений для деталей, образующих конструктивный узел, практически не отличаются (рис. 3).

Если участок перехода от одного процесса к другому описать экспонентой, то асимптотическое подобие позволяет достаточно точно описать ход переходного процесса при $\tau \ge \tau_s$ формулой:

$$\sigma(\tau) = \left[G(\tau - \Delta s, k_{\alpha}) - \Delta G \exp\left(-\frac{\tau - \tau_s}{\nu_s}\right) \right] T_u, \quad (7)$$

где $\Delta G = G(\tau_s - \Delta s, k_\alpha) - G(\tau_s, k_{\alpha_s});$

v_s – характерное время реакции температурного состояния на изменение теплоотдачи.

Параметр v_s уравнения (7) можно идентифицировать по расчету по модели высокого уровня переходного процесса с постоянной при $\tau \ge 0$ температурой T_u и однократным ступенчатым изменением теплоотдачи в момент τ_s .

Переходная характеристика при ступенчатом изменении теплоотдачи, исходя из (7), при $\tau \ge \tau_s$ будет иметь вид:

$$G\left(\tau, k_{\alpha_n}\Big|_{\tau=0}^{\tau}\right) = \Pi(\tau - \Delta s, k_{\alpha}) - \Delta \Pi \exp\left(-\frac{\tau - \tau_s}{\nu_s}\right). (8)$$

Для процесса, начавшегося в момент η, и протекающего с непрерывным изменением теплоотдачи,

смещение переходной характеристики $s_{\eta}(\tau)$ можно найти интегрированием смещений (6), произошедших в предшествующие моменты:

$$s_{\eta}(\tau) = \xi \int_{\eta}^{\tau} (\tau - \tau_s - s_{\eta}(\tau_s)) \frac{dk_{\alpha}(\tau_s)}{k_{\alpha}(\tau_s)}.$$
 (9)

Функцию $k_{\alpha}(\tau)$ в формуле (9) следует рассматривать как обобщенную функцию, скачки которой порождают скачки обобщенной функции $s_n(\tau)$ и др.

Используя переходную характеристику (8), с помощью выражения (4) получим зависимость $\sigma(\tau)$ при скачке управляющей температуры T_u в момент η и непрерывном изменении теплоотдачи. Разделив $\sigma(\tau)$ на T_u , получим формулу соответствующей переходной характеристики:

$$G_{\eta}(\tau, k_{\alpha_n} \Big|_{\tau=0}^{\tau}) = G\left(\tau - \eta - s_{\eta}(\tau), k_{\alpha}(\tau)\right) - \int_{\eta}^{\tau} \exp\left(-\frac{\tau - \tau_s}{\nu_s}\right) dG_{\eta}(\tau_s), \qquad (10)$$

где $dG_{\eta}(\tau) = G(\tau - \eta - s_{\eta}(\tau), k_{\alpha}(\tau)) - G(\tau - \eta - (s_{\eta} + ds_{\eta}(\tau)), k_{\alpha}(\tau) - dk_{\alpha}(\tau))$

 – разность переходных характеристик с постоянной теплоотдачей в момент изменения теплоотдачи.

Использовав переходную характеристику (10) в формуле (4), получим формулу динамики температурного напряжения при переменных $T_u(\tau)$ и $k_{\alpha}(\tau)$:

$$\sigma(\tau) = \sigma(0) + \int_{0}^{\tau} G\left(\tau - \eta - s_{\eta}(\tau), k_{\alpha}(\tau)\right) dT_{u}(\eta) - \int_{0}^{\tau} \int_{\eta}^{\tau} \exp\left(-\frac{\tau - \tau_{s}}{v_{s}}\right) dG_{\eta}(\tau_{s}) dT_{u}(\eta) .$$

Для экономии вычислительных ресурсов пределы интегрирования можно уменьшить до границ существенного влияния предыстории $T_u(\tau)$ и $k_\alpha(\tau)$ на текущее температурное, а следовательно, и напряженное состояние:

$$\sigma(\tau) = \sigma(\tau_0) + \int_{\tau_0}^{\tau} G(\tau - \eta - s_{\eta}(\tau), k_{\alpha}(\tau)) dT_u(\eta) - \sigma(\tau) dT_u(\eta) - \sigma(\tau) dT_u(\eta) dT_u(\eta) dT_u(\eta) - \sigma(\tau) dT_u(\eta) dT_u(\eta)$$

$$-\int_{\tau_0}^{\tau}\int_{\tau_0}^{\tau} \exp\left(-\frac{\tau-\tau_s}{v_s}\right) dG_{\eta}(\tau_s) dT_u(\eta), \qquad (11)$$

где $\tau_0 = \tau - 7\nu_{max}$;

 $\tau_{00} = \tau - 5 v_s;$

 v_{max} – максимальное v_i в переходной характеристике (5).

Уравнения (2), (5), (9) и (11) связывают температурное напряжение в выбранной точке узла конструкции с контролируемыми параметрами двигателя, т.е. могут использоваться как мониторинговая модель температурного напряжения в этой точке.

На рис. 4 представлены расчеты изменения окружной компоненты тензора температурного напряжения в критической точке ротора ТВД по высокоуровневым моделям температурного и напряженного состояний и по мониторинговой модели при изменении режимов: малый газ (2 мин) – взлетный (2 мин) – малый газ (10 мин). Отличие напряжений на протяжении процесса не превысило 5 МПа, отличие пикового значения напряжения – 2 МПа. Отношение затрат машинного времени ~5300:1.

Таким образом, математические модели температурных напряжений на основе асимптотического

Рис. 4. Цикл «малый газ – взлетный – малый газ». Изменение окружного температурного напряжения в диске турбины высокого давления:

 по высокоуровневым моделям двигателя и термонапряженного состояния ротора;

2 – по идентифицированной мониторинговой модели

подобия переходных характеристик, идентифицированные по моделям высокого уровня, обеспечивают расчет температурных напряжений на неустановившихся режимах с погрешностью менее 5 МПа относительно моделей высокого уровня, при более чем 5000-кратном уменьшении затрат машинного времени. Это позволят рекомендовать их в качестве мониторинговых моделей температурных напряжений для систем учета выработки ресурсов ГТД.

Литература

1. Крикунов Д.В., Симбирский Д.Ф., Олейник А.В. Модель граничных условий конвективного теплообмена роторных деталей ГТД для систем учета выработки ресурса. // Авиационно-космическая техника и технология: Сб. научн. тр. – Х.: Нац. азрокосм. ун-т «ХАИ», 2001. – Вып. 23. – С. 139 – 141.

 Копелев С.З., Слитенко А.Ф. Конструкции и расчет систем охлаждения ГТД. – Х.: «Основа» при Харьк. ун-те, 1994. – 240 с.

3. Биргер И.А., Мавлютов Р.Р. Сопротивление материалов. – М.: Наука, 1986. – 580 с.

4. Модель термонапряженного состояния диска турбины на основе его переходных характеристик / А.В. Олейник и др. // Авиационно-космическая техника и технология: Сб. научн. тр. – Х.: Гос. аэрокосм. ун-т "ХАИ", 2000. – Вып. 19. – С. 228 – 235.

5. Олейник А.В. Сравнительная оценка погрешностей методов мониторинга выработки ресурсов авиационных газотурбинных двигателей // Авиационно-космическая техника и технология: – 2005. – Вып. 8 (24). – С. 40 – 44.

 Лыков А.В. Теория теплопроводности. – М.: Высшая школа, 1967. – 614 с.

Поступила в редакцию 4.06.2005

Рецензент: д-р техн. наук, проф. Д.Ф. Симбирский, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.