УДК 629.735.33.025.1

Φ.Μ. ΓΑΓΑΥ3

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

РАЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ СИЛОВЫХ ЭЛЕМЕНТОВ СЕЧЕНИЯ КРЫЛА ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Предложена методика рационального проектирования силовых элементов поперечного сечения многолонжеронного крыла. Разработанный алгоритм может использоваться при выборе рациональных конструктивно-силовых схем композитных крыльев большого удлинения. Приведены результаты численных исследований.

композиционный материал (КМ), сечение, силовой элемент, распределение

Введение

Использование КМ в конструкциях летательных аппаратов приводит к увеличению числа параметров, варьированием которых можно влиять на целевую функцию. Например, уменьшение массы конструкции крыла может быть достигнуто как в результате оптимального распределения материала, так и оптимальным проектированием структуры КМ, выбором рационального конструктивного типа панелей (гладкие, трехслойные, вафельные) и т.п.

В настоящее время основные задачи оптимального проектирования изделий из КМ решены для сравнительно простых конструкций типа панелей, баллонов давления, оболочек вращения и т.д. В данной статье рассматривается использование итерационного алгоритма [1] в процессе определения рационального распределения материала по сечению многолонжеронного крыла из КМ.

Решение задачи

В основе решения задачи лежит выбор закона распределения материала по полкам лонжеронов [1, 2]. В качестве возможных допущений о распределении материала по лонжеронам рассматриваются следующие зависимости:

 – распределение изгибающего момента *M_X* пропорционально высотам лонжеронов, в соответствии с которым площади полок определяются по следующим формулам:

$$f_{ei} = \frac{M_x H_i^{k-1}}{E_{ei} \varepsilon_{ei} \sum_{i=1}^n H_i^k}; \quad f_{hi} = \frac{M_x H_i^{k-1}}{E_{hi} \varepsilon_{hi} \sum_{i=1}^n H_i^k}; \quad (1)$$

 – распределение площадей полок лонжеронов пропорционально их координатам в центральных осях (рис. 1):

$$f_{\theta i} = f_{\theta 1} \left(\frac{y_{\theta i} - y_0}{y_{\theta 1} - y_0} \right)^k; \quad f_{H i} = f_{H 1} \left(\frac{y_{H i} - y_0}{y_{H 1} - y_0} \right)^k; \quad (2)$$

 – синусоидальный закон распределения площадей полок по хорде [2]:

$$f_{\theta i} = A_{\theta} \left(\sin \frac{\pi y_{\theta i}}{2Y_{\theta}} \right)^{k\theta}; \quad f_{\mu i} = A_{\mu} \left(\sin \frac{\pi y_{\mu i}}{2Y_{\mu}} \right)^{k\mu}.$$
 (3)

Коэффициенты k, Y_{e} , Y_{u} , ke, kн в формулах (1) – (3) являются оптимизируемыми параметрами задачи. Площади f_{e1} , f_{n1} , A_{e} , A_{n} являются искомыми параметрами и определяются из уравнений равновесия по методике [1] по заданным предельным деформациям ε_{ei} , ε_{ni} и с учетом работы обшивки на изгиб.

Поиск рациональных значений параметров распределений осуществляется методом последовательного перебора, при этом на каждом этапе проводится проектировочный расчет элементов сечения по методике [1].

Рис. 1. Сечение многолонжеронного крыла

В качестве примера рассмотрим проектирование силовых элементов поперечного сечения трехлонжеронного крыла (рис. 2) из углепластика со следующими физико-механическими характеристиками:

 E_1 = 100 ГПа; E_2 = 10 ГПа; G_{12} = 6 ГПа; μ_{12} = 0,35; F_{1p} = 900 МПа; F_{1c} = 700 МПа; F_{2p} = 50 МПа; F_{2c} = 120 МПа; F_{12} = 75 МПа; δ_0 = 0,08 мм.

Предполагается, что толщина и угол армирования КМ в пределах какой-либо панели обшивки или стенки лонжерона постоянна. Физико-механические характеристики панелей определялись для пакета слоев с углами армирования ±45°.

Проектирование сечения проводилось по двум расчетным случаям, характеризуемым:

изгибающими моментами:

 $M_X^{(1)} = -180$ кНм, $M_X^{(2)} = 150$ кНм;

- перерезывающими силами:

$$Q_y^{(1)} = 240 \text{ kH}, \ Q_y^{(2)} = -240 \text{ kH}$$

- точками приложения перерезывающих сил:

$$x_Q^{(1)} = 0,5$$
 м, $x_Q^{(2)} = 0,6$ м.

Результаты расчетов сведены в табл. 1 – 3.

Рис. 2. Положение лонжеронов по сечению крыла

Таблица 1

Рациональные параметры силовых элементов при допущении (1), k = 17,8

Силовой элемент				Суммарная площадь, мм ²											
	<i>i</i> = 1					<i>i</i> = 2			<i>i</i> = 3						
				Но	мер по.	пки									
Полки	ПВ1		ПH1	ПВ2 ПН2		ПВЗ	ПВ3 ПН3		2880						
					2000										
	248		1296	8		152		8	8	_	8708				
бшивка стенки	Номер панели										0/90				
	OB1	OH1	C1	OB2	OH2	C2	OB3	OH3	6 C3	5018					
				Толщи	на пане	лей, мм				3918					
ОИ	0,64	0,64	3,84	3,84	3,84	0,16	0,80	0,96	0,80						

Таблица 2

Силовой элемент																
	<i>i</i> = 1			<i>i</i> = 2			<i>i</i> = 3				Суммарная площадь, мм ²					
				Нс	мер пол	іки										
іки	ПВ1		ΠH1	ПВ2	2	ПН2	ПВЗ	3]	ПН3	2760					
Пол	Площадь полок, мм ²										2700					
	272		1264	88		504	384		248			9741				
бшивка стенки	Номер панели									0/41						
	OB1 OH1		C1	OB2	OH2	C2	OB3	OB3 OH3		C3	5021					
		Толщина панелей, мм									5981					
O Z	0,80	0,80	3,68	3,84	3,04	0,16	0,80	1,6	0	0,80						

Рациональные параметры силовых элементов при допу	ущении (2), <i>k</i> = 2,8
---	----------------------------

Таблица 3

Рациональные параметры силовых элементов при допущении (3),	$Y_{e}=1,1y_{e2};$	Y _н =0,6у _{н1} ; кв =	=19,5; <i>кн</i> =1
---	--------------------	---	---------------------

Силовой элемент				Суммарная площадь, мм ²							
	<i>i</i> = 1					<i>i</i> = 2			<i>i</i> = 3		
	Номер полки										
ІКИ	ПВ1		ПH1	ПВ2	2	ПН2	ПВЗ	3	ПН3	2616	
Пол					2010						
, ,	144 1		1320	24 352		544 232		232		8544	
Обшивка и стенки						8344					
	OB1 OH1 C		C1	OB2	OB2 OH2 C2		OB3	OB3 OH3		5028	
				Толщи	на пане	лей, мм				3928	
	0,80	0,80	3,52	3,84	3,20	0,16	0,80	1,44	0,64		

Заключение

По результатам расчетов видно, что все три допущения приводят практически к одинаковой суммарной площади силовых элементов (отличие составляет 1...3%). Существенные различия наблюдаются в характере распределения материала по полкам лонжеронов. Для допущения (1) характерна концентрация основного материала по полкам лонжерона с максимальной строительной высотой. При использовании предположения (2) наибольшие площади полок в рациональной конструкции наблюдаются для второй верхней и первой нижней полок лонжеронов, что связано с несимметричностью профиля. В целом, распределение (3) приводит к меньшей площади сечения, поэтому может использоваться в качестве оптимального решения задачи. 1. Гагауз Ф.М. Итерационный метод проектирования сечения крыла большого удлинения из композиционных материалов // Вопросы проектирования и производства конструкций летательных аппаратов: Сб. науч. трудов. – Х.: Нац. аэрокосм. ун-т "ХАИ", 2006. – Вып. 1 (44) – С. 109-113.

Гагауз Ф.М. Проектирование многолонжеронного крыла из композиционных материалов // Авиационно-космическая техника и технология. – 2005. – № 2 (18). – С. 28-32.

Поступила в редакцию 13.03.2006

Рецензент: д-р техн. наук, проф. Я.С. Карпов, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.

Литература