УДК 621.373.826.038.825.4

В.Н. ШМАРОВ

Национальный авиационный университет, Киев, Украина

ИССЛЕДОВАНИЯ ЧАСТОТНОЙ АНАЛОГОВОЙ МОДУЛЯЦИИ ПОЛУПРОВОДНИКОВЫХ ЛАЗЕРОВ

Экспериментально исследованы режимы частотной модуляции для инжекционных лазеров полоскового типа, прошедших принудительное моделирующее старение в условиях складского хранения в нормальных условиях, в сравнении с новыми зарубежными аналогами.

частотная аналоговая модуляция, полупроводниковые лазеры, инжекционные лазеры полоскового типа, системы связи

Введение

В настоящее время инжекционные полупроводниковые лазеры широко используются с системах связи, средствах дистанционного зондирования, в измерительных приборах и системах для решения задач метрологии и спектроскопии. Особенную рольтакие источники излучения приобретают в мобильных системах дистанционного зондирования и диагностики параметров сложных крупногабаритных поверхностей, не имеющих высокой чистоты обработки, но имеющие специальные защитные покрытия. Точностные характеристики и разрешающая способность таких средств определяется шириной спектра информационного сигнала, который формируется током инжекции лазера.

Частотная модуляция лазеров в режиме токовой накачки исследовалась ранее рядом авторов, в том числе и в работах [1-3].

Однако в подобных работах не исследованы спектры излучения лазеров с учетом старения их параметров после длительного складского хранения в нормальных условиях. Известно, что с течением времени параметры инжекционных лазеров меняются [4].

Нами исследовался режим частотной модуляции отечественных инжекционных лазеров с учетом эффекта старения, складское хранение которых составляло более пяти лет, и проведены сравнитель-

ные исследования с новыми экземплярами зарубежных аналогов.

Экспериментальные исследования частотной модуляции информационного сигнала в режиме токовой модуляции инжекционных лазеров

В инжекционных полупроводниковых лазерах переменный ток инжекции вызывает как амплитудную, так и частотную модуляцию. Такой режим излучения приводит к уширению или появлению тонкой структуры спектра генерируемой моды. Собственная резонансная частота f_k определяется, как известно [5], следующим выражением:

$$f_k = k \cdot c/(2n_3 L), \tag{1}$$

где k — целое число; c — скорость света; n_3 — эффективный показатель преломления активного волновода; L — длина резонатора.

Если определить применительно к полупроводниковому инжекционному лазеру понятие токовый коэффициент частотной модуляции K_{u_M} (исходя из причин ее появления), то его можно найти из отношения изменения частоты генерации лазера (т.е. девиации частоты) к амплитуде тока синусоидального информационного сигнала. В дифференциальной форме он определяется следующим выражением [6]:

$$K_{uM} = \frac{df_k}{dJ} = -f_k \left[\frac{1}{n_9} \frac{\partial n_9}{\partial N} \frac{dN}{dJ} + \left(\frac{1}{n_9} \frac{\partial n_9}{\partial T} + \frac{1}{L} \frac{dL}{dT} \right) \frac{dT}{dL} \right]. (2)$$

В этом выражении отсутствуют временные характеристики лазера и описывается квазистационарное приближение, при котором постоянная времени изменения N и T значительно меньше времени изменения тока J. Такой достаточно медленный динамический режим характерен для установившегося температурного поля.

Температурный коэффициент

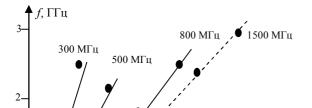
$$\left(\frac{1}{n_9}\frac{\partial n_9}{\partial T} + \frac{1}{L}\frac{dL}{dT}\right)$$

для лазера на GaAs примерно равен 10^{-4} град $^{-1}$ [7].

Из выражения (2) следует, что величина K_{u_M} зависит от изменений концентрации и температурного поля.

Экспериментально исследованы образцы полосковых инжекционных лазеров из арсенида галлия (промышленный аналог — ЛПН-1М) с азотным охлаждением, работающий в одномодовом режиме. Информационный сигнал формировался генератором, работающем в диапазоне до 1200 МГц. Выходная мощность фиксировалась с использованием предварительно прокалиброванного ріп-диода.

Если предположить, что поле изменяется по закону


$$E(t) = E_0 \left[1 + M_{a_M} \cos \left(2\pi f_M t + \Psi \right) \right] \times \\ \times \cos \left(2\pi f_S t + \mu \sin 2\pi f_M t \right), \tag{3}$$

где μ — индекс частотной модуляции; μ = $\Delta f_c/f_{\scriptscriptstyle M}$.

В этом случае нормированный спектр Фурье интенсивности P_n при частотной модуляции выражается, как известно [8], через функции Бесселя первого рода:

$$P_{\scriptscriptstyle H} = J^2_{\,k}(\mu) + \, M_{\scriptscriptstyle BM} \left[J_k \left(\mu \right) J_{\,k+1} \left(\mu \right) + J_{\,k-1}(\mu) \cos \, \Psi \right] + \\ + \left(M_{\scriptscriptstyle BM} / \, 2 \right)^2 \left[J^2_{\,\,k+1}(\mu) + J^2_{\,\,k-1}(\mu) + \\ + 2 \, J_{\,\,k+1} \left(\mu \right) J_{\,\,k-1} \left(\mu \right) \cos \, 2 \Psi \, \right], \tag{4}$$
 где $k = 0, \pm 1, \pm 2, \ldots$

Радиочастотный спектр фиксировался на спектроанализаторе и при $M_{a_M} \prec \prec 1$ наблюдался симметричный спектр, что следует из выражения (4), так как в этом случае $J_k(\mu) = (-1)^k J_{-k}(\mu)$, а $P_{\scriptscriptstyle H}$ пропорциональна величине $J^2_k(\mu)$.

Нормировку результатов измерений интенсивности гармоник удобно провести, воспользовавшись следующим приемом. Известно, что функция Бесселя нулевого порядка первый раз обращается в нуль при $\mu = 2,4$. Если считать в первом приближении, что на некотором интервале и переменные составляющие J (соответственно, переменные составляющие тока возбуждающего информационного сигнала) линейно связаны с µ, то тем самым найденные значения и будут определять соответствующие значения переменных значений Ј. Это позволяет после проведения соответствующих расчетов $J^2_k(\mu)$ экспериментально провести сравнение их с измеренными спектроанализатором значениями интенсивностей гармоник, которые пронормированы на интенсивность на несущей частоте при отсутствии модуляции.

Результаты измерений девиации частоты с учетом вышеуказанной методики нормировки представлены на рис. 1. Исследования показали, что девиация частоты прямо пропорционально зависит от величины переменного тока информационного сигнала. При этом с ростом частоты модуляции крутизна этой зависимости падает, а максимальное значение девиации частоты при переменном токе накачки в пределах 1,1 – 1,2 от порогового значения достигает величин до 2,5 –3,0 гГц.

С учетом вышеизложенной методики определения выходного спектра излучения полупроводникового инжекционного полоскового лазера, работающего в режиме ЧМ, рассчитаны по результатам экспериментальных данных величины K_{u_M} .

Результаты расчетов приведены на рис. 2.

Из приведенных экспериментальных исследований и расчетов видно, что с ростом возбуждающего тока относительно порогового значения величина $K_{\rm чм}$ незначительно падает. В целом зависимость коэффициента частотной модуляции от модулирующей частоты носит падающий характер и разделяется на три частотных области.

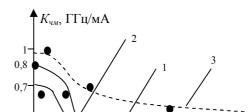


Рис. 1. Зависимость девиации частоты от тока накачки для полоскового инжекционного лазера; частоты модуляции

 $(1 \div 3 - \text{отечественные}, 4 - \text{зарубежные лазеры}): 1 - 300 МГц; 2 - 500 МГц; 3 - 800 МГц; 4 - 1500 МГц$

В первой области частот (область низких частот примерно до частот 1 МГц) значение $K_{\rm чм}$ слабо зависит как от модулирующей частоты, так и от соотношения J/J_n при малых изменениях последнего (в пределах 10%) и стремится к некоторой постоянной величине, которая определяет квазистационарный режим при заданных значениях J переменного значения тока накачки. Этот участок определяет одновременное влияние изменения температуры и концентрации носителей на эффективный показатель преломления $n_{3\phi\phi}$.

Область средних частот до 200-300 МГц характерна почти постоянным значением величины K_{um} , причем в этой области частот крутизна функциональной зависимости $K_{um} = F(f_m)$ существенно меньше по сравнению с ее значением в области низких частот, что физически соответствует стационарному установившемуся процессу генерации в области данных частот модуляции. Эта область частот характерна стационарным изменением n_{app} от концентрации носителей до частот

$$f_p = \sqrt{(J/J_n - 1)/(\tau_c \tau_p)}$$
.

Этот частотный предел определяет резонансное

Рис. 2. Зависимость коэффициента частотной модуляции от модулирующей частоты для полоскового инжекционного лазера с длиной волны излучения 0.85 мкм для тока накачки, превышающего пороговый ток $(1 \div 2 -$ отечественные, 3 - зарубежные лазеры): 1 - в 1.4 раза; $2 \div 3 -$ в 1.2 раза

возбуждение релаксационных колебаний [9].

С повышением частоты модуляции — область высоких частот — величина $K_{\rm ч.м}$ сильно падает из-за увеличения реактивной составляющей тока модуляции и для частот модуляции более 600-700 МГц ее значение меньше 0,25. Этот спад можно уменьшить качественным согласование лазерного излучателя с СВЧ возбуждающим контуром.

Была исследована функциональная зависимость K_{um} и для лазеров, генерирующих в области длин волн 1,3 мкм (непромышленные образцы на базе ДГС в системе InP-(InGa)AsP) с активным слоем около 0,3 км, и для лазеров с трехслойным волноводом с толщиной активного слоя около 0,07 мкм на базе In-GaAsP. Этот диапазон соответствует минимуму дисперсии одномодовых волоконных световодов.

Пороговое значение тока для лазеров типа системы InP-(InGa)AsP находилось в пределах 150 мA, а пороговое значение тока для лазеров типа системы InGaAsP находилось в пределах 60 мA.

Результаты этих экспериментальных исследований представлены на рис. 3.

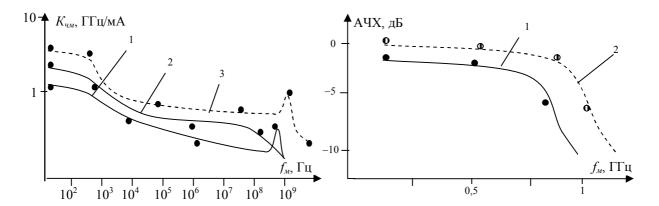


Рис. 3. Зависимость коэффициента частотной модуляции от частоты модулирующего сигнала для инжекционного лазера с длиной волны излучения 1,3 мкм; выходная мощность $(1 \div 2 - \text{отечественные}, 3 - \text{зарубежные лазеры}): 1 - 7 MBT; 2 - 4,5 MBT; 3 - 7 MBT$

Рис. 4. Амплитудно-частотные характеристики инжекционных лазеров: 1 – отечественные:

2 – зарубежные

Если сравнивать зависимости коэффициентов частотной модуляции от частоты модулирующего сигнала для лазеров с длиной волны излучения 1,3 мкм и с длиной волны излучения 0,85 мкм, то $K_{v_{M}}$ для лазеров с длиной волны излучения 1,3 мкм почти в два раза больше $K_{v_{M}}$, чем для лазеров с длиной волны излучения 0,85 мкм, хотя характеры этих зависимостей и АЧХ, измеренной с помощью измерительной системы X1-43 (срис. 4), близки.

Следовательно, при обеспечении согласования полупроводникового лазера с внешним источником возбуждающего информационного СВЧ сигнала высокое значение индекса частотной модуляции можно достичь в широком диапазоне модулирующих частот — до 700 МГц.

Представляет большой интерес для практики исследовать связь частотной модуляции инжекционных лазеров с дифференциальными характеристиками их *p-n* перехода.

Как следует из уравнений (1), (2) дифференциальное сопротивление p-n перехода носит комплексный характер, активную составляющую которого можно представить в виде:

$$R = Rs + \Delta R = Rs + \eta \kappa T / eI.$$
 (5)

Ранее было показано, что девиация частоты инжекционных лазеров связана с изменениями эффективного показателя преломления, который зависит от температуры и концентрации носителей. Если достигнута полная стабилизация усиления, что соответствует стабилизации квазиуровней Ферми в активной области, то второй член в уравнении (5) близок к нулю. Если этот член в уравнении (5) не равен нулю, то это значит, что ΔR полностью определяется избыточным значением концентрации носителей над его пороговым значением N_0 .

И в полосе частот до 700 МГц, где можно с достаточной для практики достоверностью пренебречь температурными и резонансными всплесками, девиация частоты и остаточное сопротивление ΔR связаны между собой следующим соотношением [10]:

$$\frac{\partial f}{\partial I} = \frac{efN_0}{2nkT} \frac{\partial n}{\partial N} \Delta R . \tag{6}$$

Сопротивление Rs можно определить по методике, изложенной в работе [11].

Оценки величин, входящих в уравнение (5), дают следующие значения:

$$\frac{\partial n}{\partial N}$$
 = (2-3)* 10⁻²¹ cm³; N_0 = (4-5) *10⁻¹⁷ cm⁻³; n = 3,6.

Тогда уравнение (5) определяет линейную зависимость девиации частоты от величины остаточного сопротивления для различного типа лазерных диодов с наклоном в пределах (800 - 1500) МГц *мА $^{-1}$ *Ом $^{-1}$.

Такая методика позволяет оптимизировать мето-

дику выбора инжекционного лазера для обеспечения нужного значения девиации частоты по остаточному сопротивлению p-n перехода.

Заключение

Экспериментально исследованы режимы частотной модуляции для инжекционных лазеров полоскового типа, прошедших принудительное моделирующее старение в условиях складского хранения в нормальных условиях, в сравнении с новыми зарубежными аналогами.

Исследования показали, что девиация частоты информационного сигнала прямо пропорциональна величине переменной составляющей тока и может достигать 3 гГц при превышении тока накачки над пороговым его значением в пределах до 1,2.

С повышением частоты модуляции величина индекса частотной модуляции (токового значения частотной модуляции) сильно падает из-за увеличения реактивной составляющей тока модуляции и может достигать значение меньше 0,25. Спад этого параметра можно существенно уменьшить путем качественного согласования лазерного излучателя с СВЧ возбуждающим контуром. И, как показали выполненные экспериментальные исследования, обеспечении оптимального согласования полупроводникового лазера с внешним источником возбуждающего информационного СВЧ сигнала значение индекса частотной модуляции можно достигать модулирующих частот до 700 МГц. На зарубежных образцах можно достичь высоких значений индекса частотной модуляции в диапазоне модулирующих частот до 1,5-2,0 г Γ ц.

Проведенные исследования позволяют разработать инженерную методику оперативного выбора инжекционного лазера, прошедшего моделирующий режим старения, для обеспечения нужного значения девиации частоты, измеряя остаточное сопротивление *p-n* перехода.

Литература

- 1. Yamamoto Y. Frequency modulation of lasers // IEEE J. QE-16. 1980. N $_{2}$ 7. P. 1251 1258.
- Yamamoto Y., Kimura T. Lasers // IEEE J.
 QE-17. 1981/ № 5. P. 919 929.
- 3. Kobayashi S., Yamamoto Y., Kimura T. Frequency modulation of injection lasers // IEEE J. QE-18. − 1982. − № 3. − P. 582 − 589.
- Богатов А.П., Елисеев П.Г. Исследование параметров инжекционных лазеров // Квантовая электроника. – 1985. – Т. 12, № 4. – С. 344 – 356.
- 5. Полупроводниковые инжекционные лазеры. Динамика, модуляция, спектры: Перевод с англ. / Под ред. Л.А. Ривлина. – М.: Радио и связь, 1990. – 320 с.
- 6. Salate R.P. The sine wave information signal // Aplied Phys. 1979. V. 20, № 11. P. 39 52.
- 7. Goldberg L., Taylor H.L., Weller J.F. Lasers // Electron. Letters. -1981. V. 17, No. 5. P. 497 505.
- 8. Харкевич А.А. Спектры и анализ. М.: ГИФМЛ, 1962. 236 с.
- 9. Kobayashi S.,Yamamoto Y., Kimura T. Lasers and fluctuations // Electron. Letters. -1981. V. 17, No 7. P. 350 359.
- 10. Dutta N.K., Olsson N.A. Lasers // J. Appl. Phys. 1984. V. 56, № 23. P. 2167 2177.
- Елисеев П.Г., Охотников О.Г., Пак Г.Т. Инжекционные лазеры // Квантовая электроника. –
 1980. № 7. С. 1670 1688.
- 12. Олейник В.И., Олейник Е.И., Шмаров В.Н. Режимы частотной модуляции для инжекционных лазеров полоскового типа // Сборник научных трудов 1-й международной конференции «Современные технологии ресурсо-энергосбережения». К.: ДАЛПУ. 1997. С. 4.

Поступила в редакцию 1.03.2006

Рецензент: д-р техн. наук, проф. В.И. Карпенко, Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков.