# УДК 621.396

# В.К. ВОЛОСЮК, А.В. КСЕНДЗУК, Р.П. ВОЛОЩУК

# Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Украина

# ОБЩИЕ ЗАКОНОМЕРНОСТИ СЕЛЕКЦИИ ЦЕЛЕЙ В БИСТАТИЧЕСКОЙ РАДИОТЕХНИЧЕСКОЙ СИСТЕМЕ С СИНТЕЗИРОВАНИЕМ АПЕРТУРЫ АНТЕННЫ

Методом пространственных частот проведен общий анализ пространственной селекции объектов бистатическими системами с синтезированием апертуры антенны (PCA) авиационного и космического базирования. Показано, что выходной сигнал оптимальной системы обработки определяется спектром пространственных частот траекторного сигнала, формируемого вследствие движения элементов бистатической PCA относительно объекта наблюдения, и линейная разрешающая способность зависит от ширины спектра этого сигнала.

# бистатическая РСА, разрешающая способность, обработка сигналов, пространственная частота, селекция целей, спектр пространственных частот, траектория

#### Введение

За последние годы вопросам построения многопозиционных радиолокационных систем с синтезированием апертуры антенны (МПРСА) авиационного и космического базирования уделяется значительное внимание [1 – 3]. Повышенный интерес объясняется рядом очень важных преимуществ многопозиционной локации перед однопозиционной, слабо использующей пространственную когерентность радиосигналов [4]: появляются новые возможности селекции целей, повышается качество и информативность изображений, скрытность работы приемных позиций, надежность и гибкость выполняемых задач.

При анализе селективных свойств многопозиционную систему обычно рассматривают как совокупность бистатических (двухпозиционных) приемопередающих пар. В зависимости от необходимости решения той или иной задачи МПРСА может изменять свою пространственную/сигнальную конфигурацию для обеспечения тех или иных режимов работы или для обеспечения требуемых качественных показателей оценки электрофизических параметров поверхности [5]. Формулирование проблемы. Ключевой характеристикой селективности любой радиолокационной системы является ее пространственное разрешение. В настоящее время существуют различные подходы к анализу разрешающей способности РСА. Свойства этих станций можно рассматривать с позиции теории информации, используя методы оптимальной обработки принятых сигналов с учетом априорных сведений об относительном перемещении РЛС и цели или на основе теории антенных систем. Применительно к моностатическим станциям обзора земной поверхности широкое применение нашел метод пространственных частот, обладающий большой физической наглядностью и относительной простотой расчетов [6].

Целью данной работы является рассмотрение общих закономерностей обработки сигналов и пространственной селекции целей при наблюдении земной поверхности с помощью бистатической РСА методом пространственных частот.

### Решение проблемы

Без нарушения общности рассмотрения и для упрощения расчетов будем полагать, что передатчик

© В.К. Волосюк, А.В. Ксендзук, Р.П. Волощук АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2006, № 5 (31) (transmitter) излучает зондирующий сигнал в направлении цели, находящейся в начале координат  $\vec{r}(0,0,0)$ , а приемник (receiver) осуществляет оптимальную обработку траекторного сигнала цели (рис. 1).



Рис. 1. Геометрия расположения и траектории движения элементов бистатической РСА

Сигнал на выходе системы оптимальной обработки (в данном случае является пространственной функцией неопределенности) может быть записан в виде:

$$\dot{U}_{Gbix}(\Delta x, \Delta y, \Delta z) = \int_{0}^{T} \dot{s}\left(t, \vec{r}_{tr}(t), \vec{r}_{r}(t), \vec{r}\right) \cdot \dot{s}^{*}\left(t, \vec{r}_{tr}(t), \vec{r}_{r}(t), \vec{r}\right) dt, \qquad (1)$$

где 
$$\dot{s}\left(t, \overrightarrow{r}_{tr}(t), \overrightarrow{r}_{r}(t), \overrightarrow{r}\right) = \dot{S}\left(t, \overrightarrow{r}_{tr}(t), \overrightarrow{r}_{r}(t), \overrightarrow{r}\right)$$
.

$$\cdot \exp jk \left\{ R_{\Sigma} \left( \overrightarrow{r}_{tr}(t), \overrightarrow{r}_{r}(t), \overrightarrow{r} \right) \right\} -$$
траекторный еди-

ничный сигнал;  $\dot{S}\left(t, \overrightarrow{r}_{tr}(t), \overrightarrow{r}_{r}(t), \overrightarrow{r}\right)$  – комплексная

огибающая

сигнала;

$$R_{\Sigma}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}_{r}(t),\overrightarrow{r}\right) = R_{tr}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}\right) + R_{r}\left(\overrightarrow{r}_{r}(t),\overrightarrow{r}\right) - R_{T}\left(\overrightarrow{r}_{r}(t),\overrightarrow{r}\right) = R_{tr}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}\right) + R_{T}\left(\overrightarrow{r}_{r}(t),\overrightarrow{r}\right) = R_{T}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}\right) + R_{T}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}\right) = R_{T}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}\right) + R_{T}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}\right) = R_{T}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}\right) + R_{T}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}\right) = R_{T}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}\right) = R_{T}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}\right) + R_{T}\left(\overrightarrow{r}_{tr}(t),\overrightarrow{r}\right) = R_{$$

единичного

суммарное расстояние передатчик-точка поверхности-приемник;  $k = 2\pi/\lambda$  – волновое число;

$$\overset{\cdot}{s}^{*}\left(t,\overrightarrow{r}_{tr}(t),\overrightarrow{r}_{r}(t),\overrightarrow{r}+\Delta\overrightarrow{r}\right) =$$

$$= \overset{\cdot}{S} \left\{ t, \overrightarrow{r}_{tr}(t), \overrightarrow{r}_{r}(t), \overrightarrow{r} + \Delta \overrightarrow{r} \right\} \cdot e^{jk \left\{ -R_{\Sigma} \left( \overrightarrow{r}_{tr}(t), \overrightarrow{r}_{r}(t), \overrightarrow{r} + \Delta \overrightarrow{r} \right) \right\}} -$$

опорный сигнал приемника, комплексно сопряженный принятому сигналу.

Допустим, приемник и передатчик системы находятся в дальней зоне относительно цели, траектории носителей выбраны так, что не требуется фокусировки при обработке сигнала. Разложим в ряд Тейлора суммарное расстояние в области малых значений  $\Delta x$ ,  $\Delta y$ ,  $\Delta z$  и ограничимся линейными членами. Тогда *фазовая функция* (выражение под экспонентой в (1)):

$$f(t, \overrightarrow{r}_{tr}(t), \overrightarrow{r}_{r}(t), \overrightarrow{\Delta r}) = \frac{\overrightarrow{r}_{tr}(t) \cdot \overrightarrow{\Delta r}}{R_{tr}\left(\overrightarrow{r}_{tr}(t)\right)} + \frac{\overrightarrow{r}_{r}(t) \cdot \overrightarrow{\Delta r}}{R_{r}\left(\overrightarrow{r}_{r}(t)\right)} =$$
$$= f_{r}\left(t, \overrightarrow{r}, (t), \overrightarrow{\Delta r}\right) + f_{r}\left(t, \overrightarrow{r}, (t), \overrightarrow{\Delta r}\right)$$
(2)

$$= f_{tr}(t, \vec{r}_{tr}(t), \vec{\Delta r}) + f_r(t, \vec{r}_r(t), \vec{\Delta r}).$$
<sup>(2)</sup>

Не теряя общности рассмотрения, допустим, что основное движение передатчика и приемника осуществляется в направлении *x* и сделаем замены:

$$\begin{aligned} x_{tr}(t) \cdot R_r \left( \overrightarrow{r}_r(t) \right) + x_r(t) \cdot R_{tr} \left( \overrightarrow{r}_{tr}(t) \right) &= x(t); \\ y_{tr}(t) \cdot R_r \left( \overrightarrow{r}_r(t) \right) + y_r(t) \cdot R_{tr} \left( \overrightarrow{r}_{tr}(t) \right) &= y(t); \\ z_{tr}(t) \cdot R_r \left( \overrightarrow{r}_r(t) \right) + z_r(t) \cdot R_{tr} \left( \overrightarrow{r}_{tr}(t) \right) &= z(t). \end{aligned}$$

При условии монотонности функции x(t) введем обратную функцию t=x(t). Тогда  $y(t)=y[x(t)]=y_1(x)$ ,  $z(t)=z[x(t)]=z_1(x)$  и выходной сигнал оптимальной системы запишем так:

$$U_{Gblx} (\Delta \overrightarrow{r}) = \int_{0}^{1} G(x) \cdot S(x) \cdot S^{*}(x) \cdot \exp\left\{\frac{x \cdot \Delta x + y_{1}(x) \cdot \Delta y + z_{1}(x) \cdot \Delta z}{R_{tr}(x_{tr}) \cdot R_{r}(x_{r})}\right\} \cdot t'(x) dx.$$
(3)

Обычно область пересечения диаграмм направленности передатчика и приемника *G*(*x*) и произведение огибающих опорного сигнала и отраженного сигнала – медленно меняющиеся функции по сравнению с фазовой функцией в области малых значений  $\Delta \vec{r}$ . Тогда свойства выходного сигнала определяются поведением фазовой функции (2).

Рассмотрим более простой случай, когда фазовая функция в выражении (3) монотонна. Данное условие накладывает некоторые ограничения на вид траекторий передатчика и приемника, но для начального анализа они оправданы. Введем обозначения для фазовой функции:  $f(x)=\xi$ ,  $f(x_0)=\xi$ ,  $f(x_k)=\xi$  и  $x=F(\zeta)$  и определим пространственную частоту выходного сигнала бистатической РСА:

$$\omega_x = k \cdot \xi = k \frac{x \cdot \Delta x + y_1(x) \cdot \Delta y + z_1(x) \cdot \Delta z}{R_{tr}(x_{tr}) \cdot R_r(x_r)} .$$
(4)

В соответствии с допущениями выходной сигнал будет иметь вид:

$$U_{Bblx} (\Delta \vec{r}) = \int_{\xi_0}^{\xi_k} \frac{G^2[F(\xi)] \cdot S[F(\xi)] \cdot S^*[F(\xi)] \cdot t^{'}[F(\xi)]}{f^{'}[F(\xi)]}$$
$$\cdot \exp(jk\xi)d\xi . \tag{5}$$

Выражение (5) можно переписать в виде преобразования Фурье:

$$\stackrel{\cdot}{U_{GbLX}}(\Delta \overrightarrow{r}) = \int_{\omega_x \min}^{\omega_x \max} H(\omega_x) \cdot \exp(j\omega_x) d\omega_x , \quad (6)$$

где 
$$H(\omega_x) = \frac{G^2(\omega_x) \cdot S(\omega_x) \cdot S^*(\omega_x) \cdot t'(\omega_x)}{f'(\omega_x)}$$

спектр пространственных частот выходного сигнала, ограниченный частотами  $\omega_{\min x}$  и  $\omega_{\max x}$ . Индекс *x* означает интегрирование по пространственным частотам по соответствующей оси. В дальней-... шем рассмотрим действительный спектр  $\operatorname{Re}(H(\omega))$ . Для оптимальной линейной системы спектр выходного сигнала определяется квадратом модуля спектра входного сигнала

$$H_{\textit{GbLX}}(\omega) = H_{\textit{GX}}(\omega) \cdot H_{\textit{GX}}^{\textit{i}}(\omega) = \left| H_{\textit{GX}}(\omega) \right|^2 [1].$$

Таким образом, выходной эффект оптимальной системы можно определить по спектру пространственных частот входного траекторного сигнала (рис. 2), формируемого в приемнике при движении элементов бистатической РСА относительно цели.

При этом

$$\left| \dot{H}_{ex}(\omega_x) \right|^2 = \frac{G^2(\omega_x) \dot{S}(\omega_x) \cdot \dot{S}^*(\omega_x) \cdot \dot{t}^*(\omega_x)}{f^{'}(\omega_x)} \quad (7)$$

характеризует форму спектральной характеристики траекторного сигнала, а выражение

$$\Delta \omega_x = k \big[ f(x_k) - f(x_0) \big] \tag{8}$$

представляет ширину его спектра в направлении х.



Рис. 2. Спектр пространственных частот траекторного сигнала в плоскости X0Y

Далее распространим результаты для траекторий общего вида и, не теряя общности, запишем выходной сигнал оптимальной системы и ширину спектра пространственных частот траекторного сигнала:

$$U_{Gblx}(\Delta \vec{r}) = \int_{\omega_x \min}^{\omega_x \max} \int_{\omega_y \min}^{\omega_y \max} \int_{\omega_z \min}^{\omega_z \max} \left| \dot{H}_{ex}[\omega(\Delta \vec{r})] \right|^2 \cdot$$

$$\exp(j\omega(\Delta \vec{r})) \, d\omega_z d\omega_y d\omega_x; \tag{9}$$

$$\Delta\omega(\Delta \vec{r}) = k \left[ f(\vec{r}_k) - f(\vec{r}_0) \right]. \tag{10}$$

В случае, если фазовая функция f(x) немонотонна вследствие различного характера движения носителей бистатической РСА, ее можно разбить на участки где она остается монотонной. Тогда выходной сигнал (6) будет определяться выражением:

$$\stackrel{\cdot}{U_{Gblx}} (\Delta \overrightarrow{r}) = \int_{\omega 0_x}^{\omega l_x} \stackrel{\cdot}{H}(\omega_x) \cdot \exp(j\omega_x) d\omega_x +$$

$$+ \int_{\omega l_x}^{\omega 2_x} H(\omega_x) \cdot \exp(j\omega_x) d\omega_x +$$
(11)  
+ 
$$\int_{\omega 2_x}^{\omega_{k_x}} H(\omega_x) \cdot \exp(j\omega_x) d\omega_x .$$

А ширина спектра пространственных частот будет определяться разницей между максимальной и минимальной частотой траекторного сигнала в соответствующем направлении. Наличие перекрывающихся частот изменит в основном амплитуду выходного сигнала (11) (рис. 3).



Рис. 3. Спектр пространственных частот бистатической РСА в направлении *x* в случае немонотонности фазовой функции *f*(*x*)

#### Заключение

Таким образом, сущность оптимальной обработки траекторного сигнала состоит в обратном преобразовании Фурье (9) спектральной характеристики (7) пространственных частот (рис. 2), формируемых вследствие движения приемника и передатчика относительно объекта наблюдения. Форма спектра (7) мало влияет на ширину выходного сигнала, и линейная разрешающая способность в направлении *x*, *y* или *z* бистатической РСА будет, в основном, определятся шириной спектра в соответствующем направлении.

Различному положению в пространстве элементов бистатической РСА соответствует своя пространственная частота. Проведенный анализ может быть полезен для исследования разрешающей способности и оценки вида траектории перемещения передатчика и приемника в пространстве относительно объекта наблюдения на селективные свойства бистатической PCA.

## Литература

1. Волосюк В.К., Ксендзук А.В., Евсеев И.А. Анализ возможностей многопозиционных РСА и комплексирование измерений // Вестник Харьковского университета. – Х.: ХНУ им. В.Н. Каразина, 2004. – № 646. – С.121-129.

 Волосюк В.К., Ксендзук А.В., Евсеев И.А. Многопозиционная РЛС с синтезированной апертурой // Радіоелектронні і комп'ютерні системи. – 2003. –№ 4. – С. 74-78.

 Черняк В.С. Многопозиционная радиолокация. – М.: Радио и связь, 1993. – 264 с.

 Кондратьев В.С. и др. Многопозиционные радиотехнические системы / Под ред. В.В. Цветнова. – М.: Радио и связь, 1986. – 264 с.

5. Евсеев И.А. Основные геометрические соотношения в многопозиционных радиолокационных системах с синтезированием апертуры антенны // Авиационно-космическая техника и технология. – 2005. – № 1. – С. 60-66.

 Реутов А.П., Михайлов Б.А., Кондратенков Г.С., Бойко Б.В. Радиолокационные станции бокового обзора / Под ред. А.П. Реутова. – М.: Сов. радио, 1970. – 360 с.

#### Поступила в редакцию 2.10.2006

Рецензент: д-р техн. наук, проф. Э.Н. Хомяков, Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков.