УДК 621.438.001 2 (02)

Н.Ф. МУСАТКИН, В.М. РАДЬКО

Самарский государственный аэрокосмический университет им. академика С.П. Королёва, Россия

ВЛИЯНИЕ ПАРАМЕТРОВ ПАРЦИАЛЬНОГО ПОДВОДА РАБОЧЕГО ТЕЛА НА КПД МНОГОСТУПЕНЧАТЫХ ОСЕВЫХ МАЛОРАЗМЕРНЫХ ТУРБИН

Приведены результаты обобщения обширных экспериментальных исследований по оптимизации параметров парциального подвода рабочего тела в двух- и трехступенчатых осевых малоразмерных турбинах со ступенями скорости. Предложены статистические соотношения по выбору этих параметров в процессе газодинамического проектирования в широких диапазонах по числу Маха и Рейнольдса.

осевая малоразмерная турбина, степень парциальности, параметр нагруженности, коэффициенты полезного действия, сопловые аппараты, рабочие колеса, перекрыша, сдвиг дуг подвода рабочего тела

Введение

Достаточно часто требования конструктивного или эксплуатационного характера являются определяющими при выборе типа малоразмерной турбины (MT). Так наиболее широкое распространение получили осевые МТ (OMT) благодаря их компактности и простой форме выхлопных каналов. С точки зрения утилизации потерь энергии с выходной скоростью весьма перспективным является применение многоступенчатых ОМТ со ступенями скорости (MOMT).

Формулирование проблемы. В настоящее время известны некоторые рекомендации [1 - 4] по проектированию двухступенчатых ОМТ со ступенями скорости. При этом наиболее целесообразная область их применения находится по параметру нагруженности $Y_{\rm T}$ в пределах 0,1...0,3, а по величине степени понижения давления $\pi_{\rm T}$ в диапазоне 7...10. В этой области режимных параметров КПД двухступенчатых ОМТ превышает КПД одноступенчатых на 5...6% (абс.).

В то же время часто требуется проектировать ОМТ, у которых $Y_{\rm T} = 0,05...0,10$ и $\pi_{\rm T} = 10...50$. В этих условиях очевиден вариант использования трехступенчатых ОМТ со ступенями скорости. Однако, каких-либо достоверных сведений и рекомендаций по их проектированию нет. Это обстоятельство требует проведения специальных исследований по определению рациональных диапазонов параметров трехступенчатых ОМТ со ступенями скорости и разработки методики их газодинамического проектирования.

Учитывая основные причины пониженного уровня КПД ОМТ, используемых для привода автономных агрегатов [1, 3], в настоящей работе приведены результаты исследований влияния параметров парциального подвода рабочего тела на экономичность МОМТ со ступенями скорости. При этом в термин «экономичность» вкладывалось не только условие получения максимума КПД, но и достижения конструктивной простоты, а также упрощения технологии изготовления лопаточных венцов.

Решение проблемы

В качестве объектов исследования использовались двух- и трехступенчатые ОМТ, которые размещались в универсальном блоке тормозного устройства [3]. Монтажная схема этого блока приведена на рис. 1.

В универсальный блок 1 (рис. 1, *a*) сопловые аппараты (СА) устанавливались с помощью обойм 6. При этом крепление венцов 3 в обоймах, а также бандажей 5 на рабочих колесах (РК) 4 осуществлялось Основные параметры блоков опытных МОМТ

№ I ступень II ступень III ступень Параметры п/п Обозначения Размерность CA РК CA РК CA РК 90 90 90 90 90 90 1 Средний диаметр, D_{ср i} MM 2 1,5 1,8...2,5 2,4 2,4...2,8 3,0 3,0...3,3 Высота лопатки, $h_{\pi i}$ ММ 3 Ширина венца, В_і 10 7 7 7 7 7 MM 29 4 90 28 32 36 29 Угол входной кромки, $\alpha_{0\pi i}$ ($\beta_{1\pi i}$) град. Угол выходной кромки, $\alpha_{1\pi i}$ ($\beta_{2\pi i}$) 20 5 град. 20 25 25 20 25 Расчетная степень понижения 6 20 1 1 1 1 1 _ давления в венце, π_i $35 \cdot 10^3$ $35 \cdot 10^3$ 7 Частота вращения, n_i $35 \cdot 10^3$ мин -_ _ 8 Число лопаток в венце, 2...30 48 2...48 48 2...48 48 _ 9 0,4 0,4 0,4 Осевой зазор, δ_{оі} 0,6 0,6 MM _ 10 0,3 0,3 0,3 Радиальный зазор, б_{гі} MM _ _ _ 11 Верхняя перекрыша, $\Delta l_{\rm Bi}$ 0,2...0,6 0...0,3 0...0,2 MM _ _ _ 12 0,1...0,4 0...0,1 Нижняя перекрыша, $\Delta l_{\rm Hi}$ _ 0...0,1 MM _ _

Рис. 1. Монтажная схема опытного блока: *a* – схема проточной части и ее препарирования; *б* – схема изменения степени парциальности

Таблица 1

методом горячей запрессовки с гарантированным натягом 0,3 мм, не вызывающим пластических деформаций в бандажах РК при высоких частотах вращения $n = (40...50) \cdot 10^3$ мин⁻¹ и $\pi_{\rm r} = 7...10$ вплоть до $\pi_{\rm r} = 20...25$.

Постоянство осевых зазоров δ_{o1i} и δ_{o2i} в степенях достигалось за счет сменных прокладок 2, а радиальных зазоров δ_{ri} – за счет обеспечения неизменной разности между внутренним диаметром обойм 6 и наружным диаметром бандажей 5 у РК 4.

При испытании парциальных ОМТ начальный угол сдвига φ_0 дуг подвода рабочего тела в сопловых венцах принимался равным нулю (см. рис. 1, δ). Увеличение длины дуги подвода (степени парциальности ε_i) в СА второй и третьей ступеней по отношению к СА первой ступени производилось в сторону вращения РК в соответствии с рекомендациями [2, 6].

Величины верхней $\Delta l_{\rm Bi}$ и нижней $\Delta l_{\rm Hi}$ перекрыш в ступенях назначались в зависимости от ε_i по рекомендациям [5].

Описанная компоновка ступеней в блоке 1 (см. рис. 1, *a*) позволяла изменять число ступеней z_i от одной до трех в широком диапазоне степени парциальности ε_i от 0,05 до 1,0, не нарушая основных параметров их взаимного расположения: δ_{0i} , δ_{ri} , Δl_i .

Основные величины геометрических, кинематических и энергетических параметров исследованных блоков МОМТ приведены в табл. 1. Всего для исследований было изготовлено 15 опытных блоков с целью обеспечения нормального закона распределения вероятности погрешностей эксперимента.

Основной целью экспериментального исследования влияния ε_i на работу МОМТ является получение зависимости частного КПД от степени парциальности:

$$\eta_{\varepsilon} = \eta_{\varepsilon i} / \eta_{\varepsilon} = 1,$$

где $\eta_{\epsilon i}$ – значение КПД при парциальном, а $\eta_{\epsilon=1}$ – значение КПД при полном подводе рабочего тела).

Естественно, что величины $\eta_{\varepsilon i}$ и $\eta_{\varepsilon = 1}$ сравниваются при одинаковых Y_{τ} и π_{τ} .

Исходя из цели, определим решение в экспериментальном плане трех взаимосвязанных задач:

1) выявление оптимальных соотношений степеней парциальности между ступенями в МОМТ, т.е. $(\varepsilon_i / \varepsilon_{i+1})_{opt};$

2) поиск границ оптимального расположения дуг подвода $\Delta \varphi_i$ рабочего тела относительно дуги подвода I СА в различных ступенях, т.е. определения ($\Delta \varphi_i$)_{opi};

3) установления зависимостей

$$\eta_{\varepsilon} = f[(\varepsilon_i / \varepsilon_{i+1})_{opt}; (\Delta \varphi_i)_{opt}]$$

в типовых для МОМТ диапазонах по числам M_{1s} и Re.

В качестве рабочего тела использовался сжатый воздух. Его параметры изменялись в пределах:

- начальная температура $(T_0)_{\rm I}^* = 280...300$ К;

- начальное давление $(p_0)_{I}^* = (10...20) \cdot 10^3 \text{ кПа};$

- противодавление на выходе из турбинного блока $p_{\rm T} = 101,325$ кПа.

Испытания проводились следующим образом. Вначале из блока турбины с полным подводом рабочего тела ($\eta_{\varepsilon}=1$) были сняты третья и вторая ступени. В характерном диапазоне $\pi_{T} = 10...20$ была получена зависимость $\eta_{T} = f(Y_{T})$ для одной ступени ОМТ. Затем в блок опытной турбины устанавливалась вторая ступень и определялась аналогичная зависимость для первых двух ступеней. И, наконец, по результатам испытаний трехступенчатой ОМТ строилась кривая $\eta_{T} = f(Y_{T})$ для турбины в целом.

На рис. 2 эти зависимости приведены для крайних значений π_{τ} . Для всех других промежуточных $\pi_{\tau i}$ кривые $\eta_{\tau i} = f(Y_{\tau i})$ расположены внутри области, обозначенной крайними кривыми.

Анализ кривых $\eta_{\rm T} = f(Y_{\rm T})$ (см. рис. 2) показывает, что $(Y_{\rm T})_{opt}$ для трехступенчатой ОМТ равен 0,16...0,18, для двухступенчатой – 0,26...0,27. Зна-

чение $(Y_{T})_{opt}$ для одноступенчатой ОМТ не было достигнуто, т.к. тормозное устройство не позволяло развивать частоту вращения $n > 80.10^{-3}$ мин⁻¹.

Для экспериментов были изготовлены семь СА первой ступени со степенью парциальности ε_1 от 0,067 до 0,625. СА второй ступени изготавливались (для каждого значения ε_1) в диапазоне от ε_1 до 1,0. Аналогичный подход использовался и при испытании третьей ступени. Отличие состояло лишь в том, что для каждого найденного значения (ε_{II})_{*opt*} величина ε_{III} располагалась в пределах от (ε_{II})_{*opt*} до 1,0.

Опыты проводились таким образом, что вначале на тормозном стенде снимались зависимости $\eta_{\tau} = f(Y_{\tau})$ для двухступенчатой ОМТ при различных

соотношениях ($\varepsilon_l/\varepsilon_{II}$). Третья ступень в этом случае была снята. Полученные зависимости перестраивались в виде характеристик $\eta_T = f(\varepsilon_{II})$ для каждого значения ε_I и фиксированных Y_T . В качестве примера на рис. З приведена одна из вышеназванных характеристик для двухступенчатой ОМТ при $\pi_T = 20$ и (Y_T)_{opt} = 0,25.

Анализ полученных результатов показывает, что для каждого ε_1 существует величина (ε_{II})_{*opt*}, при которой η_{τ} двухступенчатой ОМТ имеет максимальное значение. Кривая $\eta_{\tau max}$ показана на рис. 3 пунктирной линией и фактически определяет зависимость (ε_{II})_{*opt*} = $f(\varepsilon_I)$, которая представлена на рис. 5. Дополнительным доказательством оптимальности значений (ε_{II})_{*i*}, определяемых линией $\eta_{\tau max}$, служит тот факт, что перепад давлений $\Delta p_i = p_{1i} - p_{2i}$ (см. рис. 1, *a*) в ступенях отсутствует, а, следовательно, течение расчетное, активное. Сама зависимость (ε_{II})_{*opt*} = $f(\varepsilon_I)$ приведена на рис. 5, из которого следует, что вторую ступень следует выполнять с полным подводом, если $\varepsilon_I \ge 0, 6$. При меньших ε_I величину (ε_{II})_{*opt*} можно вычислить по статистической формуле

$$(\varepsilon_{\rm II})_{opt} = \varepsilon_{\rm I} (1 + 0.71 \varepsilon_{\rm I}). \tag{1}$$

Численный анализ опытных данных показал, что выражение (1) справедливо во всем исследованном диапазоне $\pi_{\rm T}$ и $Y_{\rm T}$ для двухступенчатого блока турбины.

На следующем этапе эксперимента определялись зависимости $\eta_{\rm T} = f(\varepsilon_{\rm I}/\varepsilon_{\rm III})$ для трехступенчатого блока. При этом соотношение ($\varepsilon_{\rm I}/\varepsilon_{\rm II}$) выдерживалось оптимальным на основании результатов предыдущего опыта. Такая зависимость для $\pi_{\rm T} = 20$ и ($Y_{\rm T}$)_{opt} = 0,16 приведена на рис. 4. При других $\pi_{\rm T}$ и $Y_{\rm T}$ кривые $\eta_{\rm T} = f$ ($\varepsilon_{\rm I}/\varepsilon_{\rm III}$) не изменяют характер протекания.

Линия $\eta_{T max} = f(\epsilon_I / \epsilon_{III})$, как и для случая двухступенчатой ОМТ, определяет при оптимальном соотношении ($\epsilon_I / \epsilon_{II}$) зависимость (ϵ_{III})_{opt} = $f(\epsilon_I)$ (рис. 4), представленную на рис. 5. Из последнего следует, что при $\epsilon_I \ge 0,3$ величина (ϵ_{III})_{opt} = 1, а при

Рис. 4. Зависимость $\eta_{\rm T} = f(\varepsilon_{\rm I}/\varepsilon_{\rm III})$ при $\pi_{\rm T} = 20$ и $Y_{\rm T} = 0,16$ и $(\varepsilon_{\rm I}/\varepsilon_{\rm II})_{opt}$

меньших є_ї ее можно найти по статистической формуле

$$(\varepsilon_{\rm III})_{opt} = \varepsilon_{\rm I} (1 + 6, 2\varepsilon_{\rm I}). \tag{2}$$

Как и в предыдущем случае, установлена справедливость выражения (2) для трехступенчатого блока турбины в диапазонах $\pi_{\rm T} = 10...20$ и $Y_{\rm T} = 0,05...0,20$.

Таким образом, первая из трех поставленных задач решена: найдены рекомендации по выбору оптимальных соотношений ($\varepsilon_1 / \varepsilon_{II}$) и ($\varepsilon_1 / \varepsilon_{III}$) для двухи трехступенчатых ОМТ во всем характерном для них диапазоне по числам Маха $M_{1s} = 1, 6...2, 5$ и Рейнольдса $Re = (2...6) \cdot 10^5$.

Однако выше отмечалось, что в понятие экономичности ОМТ дополнительно вкладывается условие достижение конструктивной простоты и технологичности изготовления и эксплуатации турбинного блока. В этой связи большое значение приобретает решение второй поставленной задачи: выработка рекомендаций для определения рационального угла сдвига φ_i начальной границы дуги подвода рабочего тела в последующей ступни по отношению к предыдущей.

Схема эксперимента приведена на рис. 1, б. В ходе опытов начало дуги подвода СА второй ступени смещалось относительно начала дуг подвода СА первой ступени в пределах ±20°. При этом положительное направление соответствует направлению вращения РК. Для каждого угла сдвига ϕ_i снимались зависимости $\eta_{T} = f(Y_{T})$ при $(\varepsilon_{I} / \varepsilon_{II})_{opt}$ во всем диапазоне $\pi_{\rm T} = 10...20$. Третья ступень в этой серии опытов была снята. Сравнение опытных зависимостей $\eta_{T} = f(Y_{T}, \phi_{i})$ при различных ε_{I} показало, что сдвиг дуг подвода в область положительных значений $\phi_i =$ $= +(0...15^{\circ})$ изменения η_{T} практически не вызывает, особенно при є₁ < 0,4. Допустимый сдвиг в область отрицательных значений фі существенно меньше и составляет – $(0...5^{\circ})$ так же при $\varepsilon_{I} < 0,4$. Этот диапазон $\Delta(\varphi)_{opt II} = f(\varepsilon_I)$ для двухступенчатой ОМТ приведен на рис. 6 пунктирной линией, а аналогичный интервал $\Delta(\phi)_{opt \text{ III}} = f(\varepsilon_{\text{I}})$ для трехступенчатой турбины – сплошной. В последнем случае, безусловно, величина $\Delta \phi_{II}$ выдержана в оптимальном диапазоне. Величина же $\Delta(\phi)_{opt III}$ несколько уже, чем для второй ступени, и составляет ($-5^{\circ}...10^{\circ}$) при $\varepsilon_{I} < 0,3$.

Расширение интервалов $\pm (\Delta \phi)_{opt i}$ как для второй, так и для третьей ступеней при уменьшении ε_1 можно объяснить следующим. При снижении ε_1 потери на вентиляцию и выколачивание возрастают. В этих условиях эффективность использования выходной скорости будет тем выше, чем на бо́льшей длине дуги подвода СА последующей ступени она утилизируется. Именно поэтому область ($\Delta \phi$)_{opt i} расширяется при низких ε_1 .

Итак, вторая поставленная задача по установлению границ оптимального расположения дуг подвода в МОМТ решена: во всем исследованном диапазоне по $\pi_{\rm T}$ и $Y_{\rm T}$ найдены области $\Delta(\phi)_{opt\,i} = f(\varepsilon_{\rm I})$, в

Рис. 6. Зависимость φ_{i opt} =(ε_I) для МОМТ при π_r = 10...20 и Y_r = 0,05...0,20: Ο - - Ο - - Ο – диапазон для I и II ступеней; Δ —Δ —Δ – диапазон для II и III ступеней

которых η_{τ} практически не зависит от угла сдвига ϕ_i границ подвода рабочего тела. Этот результат имеет большое практическое значение при проектировании МОМТ, а также их монтаже и эксплуатации, поскольку не требует специальных фиксирующих элементов в конструкции и обеспечения доступа для контроля надежности.

Наконец, для решения третьей задачи по определению частного КПД $\overline{\eta}_{\varepsilon}$, учитывающего влияние начальной степени парциальности ε_{I} при $(\varepsilon_{I} / \varepsilon_{II})_{opt}$ и $(\varepsilon_{I} / \varepsilon_{III})_{opt}$ в МОМТ, были построены зависимости $\overline{\eta}_{\varepsilon} = f(\varepsilon_{I}, Y_{T})$, представленные на рис. 7 для трех значений Y_{T} : 0,05; 0,10; 0,20. Интересно отметить, что для всех $\pi_{T} = 10...20$ эти кривые и количественно и качественно одинаковы.

Численный анализ кривых, изображенных на рис. 7, позволил получить статистическую зависимость

$$\overline{\eta}_{\varepsilon} = 1 - k \cdot Y_{\mathrm{r}}^{-0.3} \cdot \left(\frac{1 - \varepsilon_{\mathrm{I}}}{\varepsilon_{\mathrm{I}}}\right) \cdot \sqrt{z}, \qquad (3),$$

где k – экспериментальный корреляционный коэффициент, равный 0,82·10⁻²; z – число ступеней МОМТ.

Для проверки адекватности выражения (3) другим типоразмерам МОМТ, была изготовлена трехступенчатая ОМТ со средним диаметром $D_{cp} = 50$ мм. Ее испытания также проводились в диапазоне $\pi_{r} =$ = 10...20 ($M_{1s} = 1, 6...2, 2$), при тех же значениях Y_{r} и в диапазоне $\varepsilon_{I} = 0,067...1,0$. Построенные для этой турбины зависимости $\overline{\eta}_{\varepsilon} = f(\varepsilon_{I}, Y_{r})$ с точностью до ± 1,5% совпадают с кривыми на рис. 7. Это соответ-

— — – для трехступенчатой турбин

ствует наиболее вероятной погрешности измерений на тормозном стенде [3], на котором проводились все исследования МОМТ. Поэтому выражение (3), определяющее $\overline{\eta}_{\varepsilon}$, справедливо для всего диапазона $M_{1s} = 1, 6...2, 2$ и $Re = (2...6) \cdot 10^5$, характерного наиболее типичным рабочим режимам МОМТ.

Литература

 Быков Н.Н., Емин О.Н. Выбор параметров и расчет маломощных турбин для привода агрегатов. – М.: Машиностроение, 1972. – 228 с.

 Гоголев И.Г., Кириллов И.И. Характеристики двухступенчатого отсека с парциальными ступенями // Энергетическое машиностроение. – Х., 1983. – Вып. 36. – С. 12-19.

 Лапчук О.А., Тихонов Н.Т. Электротормоз для испытаний микротурбин // Испытания авиационных двигателей. – Уфа: УАИ, 1980. – № 8. – С. 126-129.

 Левенберг В.Д. Судовые турбоприводы: Справочник. – Л.: Судостроение, 1983. – 327 с.

5. Мусаткин Н.Ф., Тихонов Н.Т. Влияние верхней и нижней перекрыш на КПД парциальной осевой воздушной микротурбины // ИВУЗ. Авиационная техника. – Казань: КАИ, 1979. – № 3. – С. 106-108.

 Наталевич А.С. Воздушные микротурбины. – М.: Машиностроение, 1983. – 192 с.

Поступила в редакцию 24.05.2006

Рецензент: д-р техн. наук А.А. Маркин, ВКБ РКК «Энергия», Самара.