УДК 621.787

Г.А. ВАСИЛЕНКО¹, Ю.П. МАНЖ OC^2

¹Государственное предприятие «Харьковское агрегатно-конструкторское бюро» ²ОАО «Гидропривод», Харьков, Украина

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ ПОСЛЕ АЗОТИРОВАНИЯ В ПЛОСКИХ КРУГЛЫХ ДЕТАЛЯХ

Проведен эксперимент, в результате обработки результатов которого получены величины остаточных напряжений в пластине после азотирования в азотированном слое и в сердцевине детали. Предложена формула для оценки напряжений в детали после азотирования.

пластина, толщина, прогиб, радиус кривизны, изгибающий момент, напряжения

Введение

При проектировании малогаборитных механизмов, передающих большие мощности, возникают, как правило, две задачи: обеспечить высокую прочность деталей и высокую твердость рабочих поверхностей. Эти требования часто вступают в противоречие, так как практически все методы упрочнения поверхности (азотирование, дробеструйная обработка и т.д.) вызывают напряжения в сердцевине детали. При проектировании крупных деталей этими напряжениями пренебрегают, но когда размеры детали малы, необходимо их учитывать, как в расчетах, так и при выборе вида упрочнений.

Данная работа была проведена с целью оценки величины остаточных напряжений после азотирования.

Для этого был проведен эксперимент, для которого изготовленные 3 диска (в том числе два свидетеля) диаметром $d = 50^+2$ мм и толщиной $h = 3^+_{-}0,2$ мм из стали 20ХЗМВФ-Ш подвергались ионному азотированию с двух сторон на глубину 0,13 мм (HV 800). После азотирования образцы не утратили плоскостность. Затем с одной стороны диск был сошлифован с удалением слоя азотирования на глубину 0,2^{+0,1} мм. В результате диск изменил форму вследствие внутренних остаточных напряжений, причиной которых является азотированный слой на другой стороне диска, не подвергавшийся механической обработке после азотирования.

1. Расчетная схема

Расчетная схема представляет собой круглую пластину радиусом R и толщиной h, которая свободна и находится в деформированном состоянии (рис. 1).

Рис. 1. Пластина

Принимаем допущение, что пластина находится в условиях осесимметричного изгиба, вследствие чего изгиб пластины происходит по шаровой поверхности. Следовательно, линия прогиба в диаметральном сечении пластины представляет собой дугу окружности.

© Г.А. Василенко, Ю.П. Манжос

2. Результаты обмеров

Толщина пластины:

$$h = \frac{\sum_{i=1}^{3} h_i}{3} = \frac{(2,72+2,79+2,74) \cdot 10^{-3}}{3} = 2,75 \cdot 10^{-3} \text{ m}$$

где *h_i* – толщины трех изготовленных образцов;

i = 3 -количество образцов.

Расчетный радиус пластины:

$$R = \frac{d_k}{2} = \frac{48 \cdot 10^{-3}}{2} = 24 \cdot 10^{-3} \,\mathrm{M}$$

Угол установки при замерах:

$$\gamma = \operatorname{arctg} \frac{(f_3 - f_1)}{d_k} = \operatorname{arctg} \frac{(3 \cdot 10^{-5} - 0)}{48 \cdot 10^{-3}} = 0,03581 \text{ град},$$

где $f_3 = 3 \cdot 10^{-5}$ м – прогиб пластины в районе точки 3 (рис. 1); $f_1 = 0$ – прогиб пластины в районе точки 1 (рис. 1).

Прогиб в районе точки 2 с поправкой на угол постановки:

$$f'_2 = f_2 - \frac{d_k}{3} \cdot \operatorname{tg} \gamma = 9 \cdot 10^{-5} - \frac{48 \cdot 10^{-3}}{3} \cdot \operatorname{tg} 0,03581 =$$

= $8 \cdot 10^{-5} \,\mathrm{m},$

где $d_k = 48 \cdot 10^{-3}$ м – контрольный диаметр, на котором производились замеры (рис. 1).

За максимальный прогиб пластины примем полученный расчетный прогиб в точке, приближенной к центру пластины $f = 8 \cdot 10^{-5}$ м.

3. Нахождение радиуса кривизны геометрически

Круглая пластина, находясь в условиях осесимметричного прогиба, деформируется так, что срединная поверхность пластины получается сферической с радиусом сферы р ([1], с. 506).

Из рис. 2 видно, что прогиб равен:

$$f = \rho - a = \rho - \sqrt{\rho^2 - R^2}$$

Отсюда находим радиус кривизны пластины

$$\rho = \frac{R^2 + f^2}{2 \cdot f} = \frac{(24 \cdot 10^{-3})^2 + (8 \cdot 10^{-5})^2}{2 \cdot 8 \cdot 10^{-5}} = 3,6 \text{ m}.$$

4. Уравнение стрелы прогиба пластины

При осесимметричном изгибе все величины являются функцией только радиуса *r*.

Поэтому рассмотрим диаметральное сечение пластины.

В этом сечении стрела прогиба будет представлять собой дугу окружности.

Рис. 2. Нахождение прогиба и радиуса кривизны

Уравнение окружности в системе координат z0r:

$$\rho^2 = r^2 + (a+z)^2$$

Решая его относительно z, получаем:

$$z = -a \pm \sqrt{\rho^2 - r^2}$$

Уравнение прогиба пластины в зависимости от текущего радиуса r:

$$z = \sqrt{\rho^2 - r^2} - a \; .$$

5. Погонные изгибающие моменты, вызывающие аналогичный прогиб пластин

Зависимость угла поворота нормали текущего сечения от прогиба для осесимметрично изогнутых пластин имеет вид ([1], с. 512):

$$\varphi = \frac{dz}{dr} = \frac{r}{\sqrt{\rho^2 - r^2}}$$

Величины погонных изгибающих моментов, вызывающих аналогичный изгиб пластин ([1], с. 513):

$$M_{r} = D \cdot \left(\frac{d\varphi}{dr} + \mu \cdot \frac{\varphi}{r}\right) =$$

$$= \frac{E \cdot h^{3}}{12 \cdot (1 - \mu^{2}) \cdot \sqrt{\rho^{2} - r^{2}}} \cdot \left(\frac{\rho^{2}}{(\rho^{2} - r^{2})} + \mu\right);$$

$$M_{\theta} = D \cdot \left(\frac{\varphi}{r} + \mu \cdot \frac{d\varphi}{dr}\right) =$$

$$= \frac{E \cdot h^{3}}{12 \cdot (1 - \mu^{2}) \cdot \sqrt{\rho^{2} - r^{2}}} \cdot \left(1 + \mu \cdot \frac{\rho^{2}}{(\rho^{2} - r^{2})}\right)$$

где *D* – цилиндрическая жесткость пластины,

$$D = \frac{E \cdot h^3}{12 \cdot (1 - \mu^2)};$$

 $E = 2 \cdot 10^5$ МПа-модуль упругости материала пластины; $\mu = 0,3$ – коэффициент Пуассона материала пластины.

Поскольку радиус пластины *r* на два порядка меньше радиуса ее кривизны *ρ*, то изменением величины погонных изгибающих моментов по радиусу пластины можно в данном случае пренебречь:

$$M_r = M_{\theta} = \frac{E \cdot h^3}{12 \cdot (1 - \mu^2) \cdot \rho}$$

6. Нахождение напряжений в азотированном слое из условия равновесия

Рассмотрим диаметральное сечение пластины, показанное на рис. 3.

В процессе азотирования напряжения в поверхностном диффузионном слое возрастают в результате повышения концентрации диффундирующего вещества (азота) в решетке металла-растворителя и образования на поверхности нитридного слоя с удельным объемом, отличающимся от удельного объема матрицы металла. Вследствие этих структурных и концентрационных изменений происходит упрочнение поверхности, и в азотированном слое возникают остаточные напряжения сжатия.

Поскольку деталь находится в равновесии, то по толщине детали (в сердцевине) возникают растягивающие напряжения, причем такие по величине, что соблюдается условие равновесия – сумма проекций сил равна нулю:

$$\sigma_{a3} \cdot \delta + \sigma_{\partial} \cdot (h - \delta) = 0, \qquad (1)$$

где σ_{a3} – величина напряжений в азотированном слое; δ – толщина азотированного слоя; σ_{∂} – растягивающие напряжения в сердцевине детали.

Поскольку в нашем расчетном диске толщина азотированного слоя невелика, то, принимая во внимание картину распределения остаточных напряжений по толщине азотированного слоя для стали, приведенную в литературе ([2], с. 74, рис. 41), можно принять равномерное распределение сжимающих остаточных напряжений в тонком азотированном слое (< 15 мкм). Соответственно принимаем и равномерное распределение растягивающих напряжений в сердцевине тонкой детали.

Наличие в детали после азотирования напряжений σ_{a3} , σ_{∂} вызывает пару сил, приводящую к изгибу пластины, который рассматривался выше. Там же было показано, что для приведения деформированной пластины в исходное плоское состояние необходимы внешние распределенные моменты M_r и M_{Θ} .

В дальнейшем будем рассматривать плоскую задачу в диаметральной плоскости пластины, показанной на рис. 3.

Остаточные напряжения после азотирования создают погонный изгибающий момент:

$$M_{A} = (\sigma_{a3} \cdot \delta) \cdot \left(\frac{h-\delta}{2} + \frac{\delta}{2}\right) = \sigma_{a3} \cdot \delta \cdot \frac{h}{2}.$$
 (2)

После приведения пластины в исходное плоское состояние момент M_A уравновешивается внешним распределенным моментом M_r . Из условия этого равновесия находим величину напряжений σ_{a3} :

$$-M_A = M_r;$$

$$-\sigma_{a3} \cdot \delta \cdot \frac{h}{2} = \frac{E \cdot h^3}{12 \cdot (1 - \mu) \cdot \rho};$$

$$\sigma_{a3} = -\frac{E \cdot h^2}{6 \cdot (1 - \mu) \cdot \delta \cdot \rho} =$$

 $= -\frac{2 \cdot 10^{3} \cdot (2,75 \cdot 10^{-5})^{2}}{6 \cdot (1-0,3) \cdot 0,13 \cdot 10^{-3} \cdot 3,6} = -769,5 \text{ MIIa}.$

Из условия равновесия (1) находим растягивающие напряжения в сердцевине пластины:

$$\sigma_{\partial} = -\sigma_{a3} \cdot \frac{\delta}{h - \delta} =$$

= -(-769,5) \cdot \frac{0,13 \cdot 10^{-3}}{2,75 \cdot 10^{-3} - 0,13 \cdot 10^{-3}} = 38,2 \text{ MIIa}.

Обращая внимание на рис. 3, делаем предположение, что при $\delta = const$ и $h \to \infty$ (бесконечно толстая пластина) на основании условия равновесия $\sigma_{\partial \to 0}$.

С другой стороны, $|\sigma_{a3}| + \sigma_{\partial} = const = \sigma^*_{a3}$, где σ^*_{a3} – сжимающие напряжения в азотированном слое бесконечно толстой пластины.

Для нашей пластины:

$$\sigma^*_{a3} = |\sigma_{a3}| + \sigma_{\partial} = 769,5 + 38,2 = 807,7$$
 MIIa.

Таким образом, из условия равновесия (1) можно записать:

$$|\sigma_{a3}| \cdot S_{cn} = \sigma_{\partial} \cdot S_{cep \partial \mu}$$

Подставляя $|\sigma_{a3}| = \sigma^*_{a3} - \sigma_{\partial}$, получаем:

$$(\sigma^*_{a3} - \sigma_\partial) \cdot S_{cn} = \sigma_\partial \cdot S_{cep\partial \mu}$$

Преобразуя, имеем:

$$\sigma_{\partial} = \sigma^*_{a3} \cdot \frac{S_{c\pi}}{S_{\partial}},$$

где S_{cn} – площадь азотированного слоя в поперечном сечении детали; S_{cepdy} – площадь сердцевины детали в поперечном сечении; S_d – площадь поперечного сечения детали:

$$S_{\partial} = S_{cep\partial \mu} + S_{c\pi}$$

Заключение

В результате обработки результатов получены следующие величины остаточных напряжений в пластине после азотирования:

в азотированном слое $\sigma_{a3} = -769,5$ МПа;

в сердцевине детали $\sigma_{\partial} = 38,5$ МПа.

На основании проведенной работы предложена формула для оценки напряжений в детали после азотирования:

$$\sigma_{\partial} = \sigma^*_{a3} \cdot \frac{S_{cn}}{S_{\partial}}.$$
 (3)

Из формулы (3) видно: чем больше площадь поперечного сечения детали с азотированным слоем, тем меньше напряжения в сердцевине детали и наоборот. Это дает возможность правильно оценить прочность при нагружении деталей, подвергшихся азотированию.

Литература

1. Сопротивление материалов / Г.С. Писаренко, В.А. Агарев., А.Л. Квитка, В.Г. Попков, Э.С. Уманский. – К.: Вища школа, 1986. – 775 с.

 Лахтин Ю.М., Коган Я.Д. Структура и прочность азотированных сплавов. – М: Металлургия, 1982. – 158 с.

Поступила в редакцию 16.05.2006

Рецензент: канд. техн. наук С.И. Детистов, ОАО «Турбогаз», Харьков.