УДК 536.21: 536.48

Г.Г. ЖУНЬ

Национальный технический университет "Харьковский политехнический институт", Украина

ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ ТЕПЛО-МАССООБМЕННЫХ ПРОЦЕССОВ В ТЕПЛОЗАЩИТЕ КРИОСОСУДОВ ДЛЯ УЛУЧШЕНИЯ ЕЕ ХАРАКТЕРИСТИК

Установлено, что эффективность теплозащитной конструкции криососудов и криоемкостей, широко используемых в ракетно-космической и криогенной технике для хранения и использования жидких N_2 , H_2 и He, в значительной степени определяется совершенством теплообмена внутри и на поверхности их дренажных горловин.

криососуд, экранно-вакуумная теплоизоляция, теплообмен, горловина, термопары, теплопроводность

Криососуды и криоемкости с теплозащитой из пакетов экранно-вакуумной теплоизоляции (ЭВТИ) в настоящее время в больших количествах применяются в ракетно-космической и криогенной технике, криомедицине, криобиологии и животноводстве для длительного хранения и использования жидких N_2 , H_2 и He. Значительное увеличение применения таких криоемкостей с ЭВТИ произойдет в результате намечаемого в ближайшие годы использования в авиации, автомобилях и в других транспортных средствах жидкого H_2 и CH_4 в качестве альтернативного экологически чистого моторного топлива [1, 2]. В связи с этим расширяются исследования особенностей тепло-массообменных процессов в пакетах ЭВТИ на криососудах, с целью разработки на основании полученных результатов комплекса научно-обоснованных конструкций и технологий для совершенствования данной теплозащиты и сведения к минимуму потерь из них жидких криоагентов.

Согласно теоретических работ [3, 4] тепловая эффективность криососудов и криоемкостей должна в значительной степени определяться степенью использования в них холода испарившихся паров жидких криоагентов для уменьшения суммарных теплопритоков через их теплозащитные конструкции с

пакетом ЭВТИ. Начинается использование данного охлаждающего эффекта внутри их дренажных горловин и определяется совершенством теплообмена (а) между парами криоагента и стенкой горловины. Экспериментальных методов исследования такого процесса в неизотермической по высоте горловине не существовало. Имелись лишь экспериментальные результаты по среднеинтегральным коэффициентам теплообмена для всей горловины криососуда в целом [5, 6]. При этом коэффициенты теплообмена а в данных работах были получены для условий в горловине, резко отличающихся от истинных. В частности, в работе [5] по всей длине горловины специально поддерживалась постоянная температура при помощи нагревателей. Возможность использования полученных таким образом среднеинтегральных значений параметров а для описания теплообмена внугри горловины не была проверена. Не исследовалась также возможная взаимосвязь между процессами теплообмена внутри горловины с парами криоагента и на ее поверхности со смонтированными вдоль нее торцами пакета ЭВТИ.

В связи с этим была впервые разработана экспериментальная методика и изготовлена установка для исследования в криососуде возможной взаимосвязи между процессом теплообмена внутри неизотерми-

ческой горловины с парами криоагента на пяти ее отдельных кольцевых локальных участках (каждый высотой 0,01 м, поверхностью ΔF) и на ее наружной поверхности с торцами ЭВТИ посредством теплопроводности через стенку. Каждый локальный участок находился (как следует из рис. 1) на определенном расстоянии от холодного конца горловины.

Локальный коэффициент теплообмена (α_{J}) на каждом участке определялся по уравнению [7 – 9]:

$$\alpha_{\pi} = \frac{Q_{\pi}}{\Lambda F \cdot \Lambda t}.$$
 (1)

При этом тепловой поток Q_{JJ} для каждого участка стеклопластиковой горловины находился по соотношению [7-9]:

$$Q_{\pi} = \frac{\lambda_{cp} \cdot \Delta F \cdot \Delta T}{\delta} \,. \tag{2}$$

Из уравнения (2) следует, что для определения параметра $Q_{\mathcal{I}}$ (при известной средней теплопроводности λ_{CP} материала горловины в поперечном сечении на каждом участке) необходимы экспериментальные данные по перепаду температуры ΔT по ее толщине δ на каждом локальном участке. Для нахождения коэффициента теплообмена $\alpha_{\mathcal{I}}$ по уравнению (1) требуются также опытные результаты по разности температур Δt между стенкой горловины и потоком криоагента в центре горловины до каждого локального участка.

В настоящих исследованиях для измерения перепадов температур Δt и ΔT использовались медьконстантановые термопары. Они изготавливались по описанной в [10] методике. Схема размещения термопар в горловине опытного криососуда представлена на рис. 1.

Перепад температуры по толщине горловины ΔT измеряли с помощью термостолбика, состоящего из 7-ми дифференциальных термопар [11] с точностью $\pm 0,03$ К. Спаи каждой термопары данного термостолбика припаивались к отдельным пластинкам 5 из медной фольги (размером $0,01\times0,01$ м), которые приклеивались на внутренней и наружной поверх-

ности горловины на соответствующих локальных участках.

Рис. 1. Схема размещения спаев термопар на локальных участках в горловине опытного криососуда X-34Б: 1, 11 – внутренняя и наружная стенки опытного криососуда, соответственно; 2 – вакуумный адсорбционный насос; 3 – стеклопластиковая горловина; 4 – термостолбик из 7 термопар для измерения перепада температур ΔТ по толщине стенки горловины; 5 – пластинки из медной фольги с термопарами; 6 – термостолбик из 25 термопар для измерения перепада температур Δ*t* между стенкой горловины и газовым потоком в ее центре; 7 – мед-

ный сегмент из уголка толщиной $8 \cdot 10^{-4}$ м для креп-

ления термостолбика; 8 - термопары для измерения

распределения температуры вдоль горловины; 9 — подмоточный слой на горловине из стекловуали ЭВТИ-7; 10 — слои пакета ЭВТИ; 12 — крышка полистироловая; 13-15 — провода термопар; 16 — штуцер для герметизации выводов термопар из межстенной полости криососуда; 17 — деревянные шпильки диаметром 1 мм для фиксирования спаев термостолбика термопар по центру горловины

Провода для соединения спаев данных термостолбиков пропускались через штуцер 16, который после окончания монтажа опытного криососуда заливался специальным герметиком.

Разность температуры Δt измеряли с помощью термостолбиков 6 из 25-ти дифференциальных термопар с точностью $\pm 0,02$ К. Спаи данных термопар приклеивались к медному сегменту уголкового профиля 7 высотой 0,01 м. К нему прикреплялись

также деревянные шпильки 17, на концах которых фиксировались спаи термостолбика 6 для определения перепада температуры между газовым потоком и горловиной.

Распределение температуры по высоте горловины исследовалось с помощью спаев температур 8, которые приклеивались к ее наружной поверхности. Для исключения теплопритоков по проводам термопар последние приклеивались к наружной (или внутренней) стенке горловины и выводились из холодной зоны по спирали.

После окончания монтажа термопар и изолирования криососуда слоями ЭВТИ далее следовали его сборка, проверка на герметичность и термовакуумная дегазация по технологии, описанной в [12]. Изготовленный таким образом опытный криососуд соединялся с измерительным блоком на экспериментальном стенде [12]. Перед экспериментами криососуд заполнялся жидким азотом до отметки, которая была на 0,03±0,01 м ниже холодного конца горловины. Через ~10 суток в теплоизоляции криососуда устанавливалось тепловое равновесие, и начинались эксперименты.

Для выявления возможной взаимосвязи между теплообменом внутри горловины с парами криоагента и сопряженным теплообменом на наружной поверхности горловины (который определяет степень использования холода паров в пакете ЭВТИ) в опытных криососудах монтаж торцов данной теплоизоляции вдоль горловины осуществлялся при различных усилиях натяжения (P_y) [13], состояниях поверхности горловины (с подмоточным слоем или без него), схемах распределения торцов ЭВТИ вдоль горловины, а также с применением других технологий.

В настоящих исследованиях на криососудах с жидким N_2 установлено, что при использовании части охлаждающего эффекта паров данного криоагента (П), равного, например, только 72 % от предельного теоретического [4] (т.е. при неполном таком

теплообмене снаружи горловины) перепады температуры на локальных участках ΔT и Δt характеризуются на рис. 2 зависимостями 2' и 3' соответственно. В случае применения разработанных конструкций и технологий, обеспечивающих максимальное экспериментальное использование холода паров (при котором параметр $\Pi \approx 96$ %) на каждом локальном участке перепады температур Δt уменьшаются, а для ΔT , наоборот, увеличиваются. Это следует из анализа на рис. 2 зависимостей 3 и 2 соответственно.

Определенные по уравнению (1) из исследованных экспериментальных результатов температурные зависимости коэффициентов теплообмена с парами азота на локальных участках $\alpha_{\mathcal{A}}(T)$ представлены на рис. 3 кривыми 1' и 1, соответственно для полного и неполного теплообмена на наружной поверхности горловины с торцами ЭВТИ.

Рис. 2. Изменение температуры в горловине опытного криососуда: 1 – распределение температуры по длине (l) горловины; 2, 2 – перепад температуры (ΔT) по толщине стенки на локальных участках горловины; 3, 3 – разность температуры (Δt) между средним значением этого параметра на локальном участке и в центре для его газовой фазы;

- 2', 3' криососуд с неполным сопряженным теплообменом между наружной поверхностью горловины и торцами ЭВТИ;
- 1, 2, 3 высокоэффективный криососуд с полным наружным сопряженным теплообменом

При этом необходимые величины тепловых потоков $Q_{\mathcal{I}}$ для локальных участков найдены по уравнению (2) с использованием средних коэффициентов теплопроводности λ_{CP} для стеклопластика гор-

ловины в перпендикулярном направлении на 5-ти локальных участках (начиная от холодного конца), равных 0,2, 0,21, 0,23, 0,24 и 0,29 Вт/(м·К) [14]. Погрешность определения локальных коэффициентов теплообмена λ_{JI} для данных участков составила ± 32 , 25, 25, 30 и 32 %.

Из полученных результатов впервые установлено, что в криососудах существует взаимосвязь между процессами теплообмена внугри горловины с парами криоагента и на ее поверхности с торцами смонтированного пакета ЭВТИ. С повышением такого теплообмена снаружи горловины увеличивается его интенсивность и с парами криоагента внутри горловины на каждом локальном участке. Для криососуда с жидким азотом повышение теплообмена снаружи горловины от неполного (соответствующего ~72 %) до полного (с $\Pi \approx 96$ %) обуславливает увеличение среднеинтегральной величины коэффициента теплообмена α с парами данного криоагента с ~4,2 до предельной величины ~5,8 Вт/(м²-К).

Рис. 3. Зависимость локальных коэффициентов теплообмена (α_{JI}) с парами N_2 внутри горловины и их чисел Нуссельта (Nu_{JI}) от температуры, а также ресурса криососуда (R) от среднеинтегрального значения α . 1, 2, 3 и 1' — криососуды с полным и неполным теплообменом снаружи горловины, соответственно

Измеренная экспериментальная зависимость $\alpha_{\mathcal{A}}(T)$ 1 для такого полного теплообмена в криососуде с жидким азотом аппроксимируется полиномом

$$\alpha_{\pi}(T) = 2,5757 + 0,1139T - 5,2313 \cdot 10^{-4} T^2 + 8,347 \cdot 10^{-7} T^3,$$
 (3)

который был использован при разработке теории теплового расчета криососудов.

Используя экспериментальную зависимость $\alpha_{\Lambda}(T)$ 1 для случая максимального наружного теплообмена были определены также для горловины криососуда величины чисел Нуссельта для локальных участков (Nu_{Λ}) по уравнению из [7]:

$$Nu_{n} = \alpha_{n} \cdot d / \lambda_{N_{2}}, \qquad (4)$$

где d — внутренний диаметр горловины (равный 0.06 м), а λ_{N2} — средняя величина коэффициента теплопроводности паров N_2 для локальных участков горловины.

Полученные значения $Nu_{\it II}$ (с погрешностью $\pm 27...36$ %) представлены на рис. 3 кривой 2. Их зависимость от температуры аппроксимируется полиномом

$$Nu_{\pi}(T) = 34,3387 - 6,2745 \cdot 10^{-2} T - 1,5442 \cdot 10^{-4} T^2 + 5,1136 \cdot 10^{-7} T^3.$$
 (5)

Ввиду низкой скорости движения паров N_2 в горловине криососуда (равной $(3...9)\cdot 10^{-4}$ м/с) число Рейнольдса менее 3,7...9,7, а обусловленное внутренней конвенцией число Нуссельта не должно превышать 3,66...4,12 [7]. В нашем случае экспериментальные значения числа Нуссельта (как видно из рис. 3) в 1,7...7 раз выше, что свидетельствует о преобладающем влиянии на теплообмен в горловине исследуемого криососуда X-34Б естественной конвенции [7].

Полученная в данных исследованиях экспериментальная зависимость $\alpha_{\pi}(T)$ 1 (рис. 3) позволила выполнить тепловой расчет по теории В.Ф. Гетманца криососуда X-34Б с учетом эффективности теплообмена испарившегося азота со стенкой горловины. В результате установлено, что интенсивность теплообмена в горловине при полном теплообмене на ее наружной поверхности с торцами ЭВТИ достаточно высока и близка к идеальной. Это обуславливает практически полное использование холода паров N_2 в горловине.

Неидеальность теплообмена данных паров со стенкой горловины начинает заметно сказываться лишь при значениях $\alpha < 5,3$ Вт/(м²K), что следует из анализа зависимости ресурса работы криососуда (R) от α (кривая $R(\alpha)$ 3 на рис. 3).

Выводы

Экспериментально показано, что многоэлементную теплозащитную конструкцию на криососудах (состоящую из дренажной горловины, вакуумного адсорбционного насоса и пакта ЭВТИ) следует рассматривать как единую систему, в которой процессы тепло-массообмена имеют сложный многомерный сопряженный взаимосвязанный характер, что следует учитывать при их оптимизации и создании теорий.

Литература

- 1. Кириллов Н.Г. Концепция производства природного газа для автотранспортных средств // Химическое и нефтегазовое машиностроение. 2001. \mathbb{N}_{2} 6. С. 17-19.
- 2. Кириллов Н.Г. Жидкий водород как альтернативное моторное топливо для автомобильного транспорта Российской федерации // Холодильный бизнес. 2006. 12-16.
- 3. Каганер М.Г. Тепловая изоляция в технике низких температур. М.: Энергия, 1966. 276 с.
- 4. Getmanets V.F., Michalchenko R.S., Yurchenko P.N., Zhun' G.G., Stears H. A shieldless method for cryogenic cold-vapor supply usage: Theory and practice // Cryogenics. 1999. No. 39. P. 985-987.
- 5. Горбачев С.П. Теоретическое и экспериментальное исследование теплообмена в горловине криогенного сосуда // Аппараты и машины кислородных и криогенных установок. 1975. Вып. 17. С. 70-80.

- 6. Демичев А.Г. Исследование теплообмена в горловине, методика расчета и разработка криостатов и комплексных криогенных систем. Автореф. дисс... канд. техн. наук: 01.04.14 / ФТИНТ АН УССР. X., 1980. 22 с.
- 7. Пастухов Б.С. Теплообмен и сопротивление при ламинарном течении жидкости в трубах. М.: Энергия, 1967. 562 с.
- 8. Каганер М.С., Семенова Р.С. Исследование переноса тепла по горловине сосуда для жидкого кислорода // Инж.-физ. журн. 1964. Т. 7, № 8. С. 97-102.
- 9. Справочник по теплообменникам: Пер. с англ. под ред. Б.С. Пастухова, В.К. Шикова. М.: Энергоиздат, 1987. Т.1. 624 с.
- 10.Жунь Г.Г., Подольский А.Г., Шалаев В.И. Исследование теплофизических параметров криобиологических сосудов "Харьков-34Б" // Криогенные системы: Разработки и исследования. К.: Наук. думка, 1984. С. 35-40.
- 11.Скотт Р.Б. Техника низких температур. М.: Изд-во иностр. литер., 1962. 414 с.
- 12.Жунь Г.Г., Подольский А.Г., Шалаев В.И., Джанашвили В.О. Криобиологические сосуды с улучшенными тепловыми характеристиками // Процессы и аппараты криогенной технологии и кондиционирования. Л.: ЛТИ им. Ленсовета, 1985. С. 59-64.
- 13.Жунь Г.Г. Оптимизация технологии монтажа теплоизоляционных слоев ЭВТИ криососудов // Придніпровський науковий вісник. Сер.: Машинобудування. 1998. № 28 (95). С. 24-30.
- 14. Кожевников И.Г., Новицкий Л.А. Теплофизические свойства материалов при низких температурах. М.: Машиностроение, 1982. 328 с.

Поступила в редакцию 5.01.2007

Рецензент: д-р техн. наук, проф. В.Ф. Гетманец, Научно-технологический институт транскрипции, трансплантации и репликации, Харьков.