## УДК 621.454:532.525

# В.В. СПЕСИВЦЕВ<sup>1</sup>, Ю.В. СПЕСИВЦЕВА<sup>2</sup>

## <sup>1</sup> Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина <sup>2</sup> Fachhochschule Bonn-Rhein-Sieg, Deutschland

## НОВЫЙ ПОДХОД К ТЕОРИИ ОТРЫВА СТРУИ РАКЕТНОГО ДВИГАТЕЛЯ ОТ СТЕНКИ СОПЛА НА РЕЖИМАХ ПЕРЕРАСШИРЕНИЯ

Предложен новый подход к теории отрыва, основанный на физических возможностях перерасширения газа в свободной струе. Для согласования параметров камеры сгорания и струи вводится поправка на дополнительный импульс, действующий на газ в раструбе сопла. Рассчитанные значения критического отношения давлений в сечении отрыва согласуются с многочисленными экспериментами при аэродинамических продувках конических сопл. Рассогласования теоретических и экспериментальных значений не превышают 6% в диапазоне чисел Маха набегающего потока M = 1...2.

### ракетный двигатель, раструб сопла, режим перерасширения, свободная струя, отрывное течение

#### Введение

С изменением внешних условий полета ракеты, а также при регулировании тяги двигателя (при изменении давления в камере  $p_{\kappa}$ ) возникают нерасчетные режимы его работы. В зависимости от давлений в камере сгорания и окружающей среды возможны три режима работы сопла ракетного двигателя (РД). Это расчетный режим  $p_a = p_H$ , т.е. когда давление на срезе сопла равно давлению окружающей среды; режим недорасширения  $p_a > p_{H}$  и режим перерасширения  $p_a < p_H$ . Ранее считалось, что на режиме перерасширения поток газа отрывается от стенки сопла в том сечении, где его давление в потоке становится равным атмосферному давлению, т.е. считалось, что сопло на этом режиме является саморегулирующимся. Однако экспериментальные исследования показали, что только при падении давления на срезе сопла до значений  $p_a < (0,4...0,2) p_H$  нормальный режим перерасширения нарушается, происходит отрыв потока от стенки сопла и часть сопла оказывается неработающей [1].

Современное состояние вопроса. Причиной отрыва потока объясняется наличие пограничного слоя, по дозвуковой части которого возмущения из внешней среды имеют возможность передаваться вверх по потоку.

Для оценки предельной степени нерасчетности (*m<sub>nped</sub>*) Г.Н. Абрамович предложил использовать формулу для прямого скачка, который устанавливается в сечении отрыва. Расчеты проводят по известным параметрам в этом сечении. Для типичного случая значения предельной степени нерасчетности, вычисленное по этой формуле, составляет около 20, что значительно больше реальных значений, равных 3...4 [2]. Поэтому схема отрыва при вхождении прямого скачка в сопло является ошибочной. Анализ результатов экспериментов в соплах с отрывом показал, что можно выделить две количественные характеристики отрывного течения: это - отношение давления за скачком, вызывающим отрыв,  $p_2$  к давлению в невозмущенном потоке  $p_1$  перед сечением отрыва, а также отношение давления окружающей среды  $p_{\rm H}$  к давлению  $p_2$ . Зная эти две характеристики течения, можно найти положение сечения отрыва и распределение давления в области отрыва, а по ним рассчитать тягу. Отмечается, что при углах раствора сверхзвуковой части сопла  $2\beta \ge 30^{\circ}$  давление за скачком равно давлению окружающей среды, т.е.  $p_{\mu} = p_2$  [3]. Многочисленные экспериментальные исследования отрывных течений позволили установить, что отношение  $m_{nped} = p_2 / p_1$  в сечении отрыва соответствует так называемому критическому отношению давлений. Оно не зависит от типа течения в сверхзвуковом потоке и является некоторой обобщающей закономерностью отрывных течений. В работе [3] приведена зависимость критического отношения давлений от числа Маха (М<sub>ск</sub>) набегающего потока перед мостообразной системой скачков уплотнения. Там же на графике проведена линия регрессии, аппроксимирующая экспериментальные точки. Она имеет вид

$$m_{nped} = 1 + 0.725(M_{c\kappa} - 1)$$
. (1)

Отклонения экспериментальных значений  $m_{nped}$  от аппроксимирующей прямой составляют (15...20)% в диапазоне изменения  $M_{c\kappa} = 1...3,5$ . Эти результаты были получены при продувках воздухом конических сопл в аэродинамических трубах. Данных по отрыву при течении в соплах продуктов сгорания РД нет.

На основе полученной в эксперименте зависимости критического отношения давлений от числа Маха набегающего потока была разработана полуэмпирическая теория расчета параметров РД, работающего на режиме перерасширения. Эту методику используют в инженерных расчетах до настоящего времени (см., например, [3]).

### Суть предлагаемого подхода к теории

В настоящей работе предлагается **подход** к теории отрыва струи от стенки сопла ракетного двигателя, базирующаяся на рассмотрении течения газа в свободной струе, которое имеет свои особенности, и течения газа в канале при одинаковых исходных данных. При этом предполагается, что поперечное сечение струи за соплом не зависит от сечения среза сопла и определяется только параметрами течения газа в свободной струе. Если располагаемый перепад давлений на сопле ( $\Pi_0 = p_\kappa / p_\mu$ ) превышает критический ( $\Pi_{\kappa p} = 1/\pi(1)$ ), то в струе за соплом наблюдается бочкообразный участок. Рассмотрим качественное изменение структуры течения газа за соплом (рис. 1).



Рис. 1. Структуры бочкообразных участков струи, соответствующие режимам работы сопла:
а – недорасширения;
б – расчетному;
в – перерасширения без отрыва;
г – перерасширения с отрывом

При безотрывном течении (рис. 1, а, б, в) входное сечение бочки присоединено к срезу сопла  $AA_1$ ( $m < m_{nped}$ ). В случае отрыва струи бочкообразный участок в струе сохраняется (рис. 1, г), но входное сечение бочки присоединено к промежуточному сечению раструба сопла  $XX_1$ . Плоскость  $XX_1$  разделяет две формы течения газа: перед плоскостью – течение в канале раструба сопла; за плоскостью – течение в свободной струе. При отрыве в сопло входит первая бочка, которая включает в себя систему волн и скачков уплотнения, в том числе и мостообразную систему. Рассмотрим особенности течения газа в первой бочке.

Запишем одномерные уравнения, связывающие параметры газа в сечениях бочки свободной струи через газодинамические функции, используя законы сохранения массы, энергии и импульса. Для составления уравнений баланса используем текущее сечение бочки и сечение, в котором параметры газа известны (коэффициент скорости газа  $\lambda$  и площадь сечения *F*). В качестве исходного выберем минимальное сечение бочки, где поток одномерный. Принимаем индекс для обозначения параметров в этом сечении *м* ( $\lambda_m$ , *F*<sub>m</sub>).

Уравнения неразрывности, записанные через полные и статические давления газа в струе, принимают вид [4]:

$$q(\lambda) = \frac{1}{\sigma} \frac{1}{f} q(\lambda_{\mathcal{M}}); \qquad (2)$$

$$y(\lambda) = \Pi_0 \frac{f_a}{f} q(\lambda_a).$$
(3)

При составлении уравнения (3) в качестве исходного сечения выбирается сечение струи, где статическое давление газа p равно заданному статическому давлению. Так, при  $p = p_H$ , газ имеет параметры одномерного газового потока, равные параметрам на срезе сопла (точка а) при расчетном режиме истечения. Параметры в точках u, u' соответствуют изобарическим сечениям бочки. Параметры исходного сечения в этом случае:  $\lambda_a$ ;  $f_a = F_a / F_M$ . Уравнение сохранения импульса запишем в виде выражения

$$z(\lambda) = z(\lambda_{\mathcal{M}}) + \left(\frac{\kappa+1}{2}\right)^{\frac{1}{\kappa-1}} \frac{f-1}{\Pi_0 q(\lambda_{\mathcal{M}})}.$$
 (4)

Уравнения содержат две неизвестные величины: относительную площадь сечения струи  $f = F / F_{M}$  и коэффициент абсолютной скорости в этом сечении  $\lambda$ . На рис. 2 построены зависимости (2), (3) и (4) (кривые 1, 3, 2) при  $\sigma = 1$ , которые представляют собой диаграмму состояния струи, рассчитанную для  $\Pi_0 = 46,5$ . Пересечение кривых 1 и 2 дает две пары значений переменных f и  $\lambda$ , удовлетворяющих обоим уравнениям, первая точка m соответствует исходным параметрам газа, вторая точка c дает значение в максимальном (среднем) сечении первой бочки.

Это одномерные сечения, скорость газа в них имеет осевое направление.





В остальных промежуточных сечениях – скорость  $\lambda$  имеет некоторый угол  $\alpha$  с осью потока. В промежуточных сечениях бочки вектор скорости имеет радиальную составляющую  $\lambda_R = \lambda \sin \alpha$ . В работе [4] проведены расчеты параметров газа в сечениях бочки по уравнениям (2), (4) с учетом радиальной составляющей  $\lambda_R$ . Получено условие совместного решения уравнений (2), (4) на участке m - a - c, которое выражается определенными зависимостями  $\cos \alpha = \varphi(f)$  и  $\lambda_R = \psi(f)$ . В точках m и c имеем  $\alpha = 0$  и  $\lambda_R = \lambda \sin \alpha = 0$ . Если попытаться определить величину угла  $\alpha$ , принимая пло-

щади сечений больше  $F_c$  или меньше  $F_M$ , то окажется, что  $\cos \alpha > 1$ , а радиальная составляющая скорости – мнимая величина. Это указывает на физическую невозможность такого течения и, следовательно, на то, что в начальном участке нерасчетной струи площадь поперечного сечения не может стать меньшей площади сечения  $F_M$  (минимального сечения бочки) или большей площади  $F_c$ , являющейся максимальной площадью сечения первой бочки струи.

Уравнения движения газа в свободной струе составлены из условия постоянства давления окружающей среды  $p_{H}$  на внешней границе струи. Под действием этого давления происходит ускорение газа в первой половине бочки от  $\lambda_{M}$  до  $\lambda_{c}$  (процесс m - a - c), либо торможение его во второй половине бочки от  $\lambda_{c}$  до  $\lambda_{M}$  в выходном сечении (процесс c - a - M).

При истечении струи из сопла с раструбом ускорение газа происходит в сверхзвуковой части сопла и, дополнительно с перерасширением, в распределенной волне разрежения (участок а-с, здесь *p* < *p*<sub>*H*</sub>). Если учесть дополнительный импульс, создаваемый раструбом сопла, то уравнение (4) на графике будет иметь вид кривой 2', а минимальному и среднему сечениям новой бочки будут соответствовать точки м' и с'. При і-х режимах течения разделяющие плоскости занимают промежуточные сечения бочек (от точек  $M_i$  до точек  $c_i$  в соответствии с і-ми режимами течения), пока возможности расширения поперечного сечения бочки не будут исчерпаны. В пределе эта плоскость займет положение, соответствующее максимальному (среднему) сечению бочки, т.е.  $F_a = F_c$ . В первой бочке будет происходить только торможение потока. Это значит, что она будет включать в себя только систему скачков уплотнения. Волна разрежения вырождается. Дальнейшее повышение  $p_{\mu}$ приведет к уменьшению  $F_c$  и при  $F_c < F_a$  среднее сечение бочки окажется присоединенным к сечению сопла внутри раструба, где  $F_c = F_x$ .

Кривая 3 на графике (рис. 2) построена по уравнению (3) при статическом давлении, равном давлению  $p_{H}$ . Ветви кривых 1 и 2 ниже кривой 3 соответствуют значениям давлений в сечениях бочки, где  $p > p_{H}$  (режимы недорасширения), а верхние ветви –  $p < p_{H}$  (режимы перерасширения).

Итак, предельным режимом при перерасширении, предшествующем отрыву струи от стенок сопла, будет режим, когда  $F_a = F_c$ , т.е. режим, когда площади максимального сечения бочки и среза сопла равны.

#### Основные соотношения

Использование уравнения (4) для струи, истекающей из раструба, требует введения поправки на дополнительный импульс, получаемый газом от стенки сопла.

Поправку на дополнительный импульс, создаваемый стенкой сопла по сравнению с импульсом в критическом сечении, необходимо вводить, так как вместо внешнего давления  $p_{H}$  на границах струйки в канале действует переменное давление p от стенки сопла. Дополнительная сила, действующая на струю в направлении движения, равна силе избыточного давления на стенку раструба сопла

$$P_{\partial} = \int_{\Delta F} (p - p_{H}) dF .$$
 (5)

Подынтегральное выражение преобразуется с использованием газодинамических функций к пяти интегралам с пределами интегрирования по  $\lambda$  от 1 до  $\lambda_a$ . Четыре интеграла можно выразить через элементарные функции, а пятый – нет, так как он относится к классу интегралов от биноминального дифференциала. Пятый интеграл решается численно.

Представим дополнительную силу в относительном виде

$$\overline{P}_{\partial} = \frac{P_{\partial}}{p_{\kappa}F_{\kappa p}} = \frac{\Delta I_{\partial}}{\beta}, \qquad (6)$$

где  $\Delta I_{\partial}$  – дополнительный импульс, сообщаемый газу стенкой сопла;  $\beta$  - расходный комплекс.

Используя выражения для расходного комплекса и критической скорости потока, получим выражение импульса в минимальном (квазивходном) сечении бочки через коэффициент скорости

$$\lambda_{ex} = 1 + \frac{1}{\kappa \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa}{\kappa-1}}} \overline{P}_{\partial} . \tag{7}$$

Параметры газа во втором минимальном (выходном) сечении бочки идентичны параметрам входного сечения в соответствии с принятым условием  $\sigma = 1,0$  (см. уравнение (2)). С ростом интенсивности системы скачков уплотнения во второй половине бочки площади минимальных сечений  $AA_1$  и  $BB_1$ могут существенно отличаться (рис. 1, а) за счет потерь полного давления ( $\sigma < 1,0$ ).

Теперь для определения перепада давлений в бочке между входным и максимальным сечениями по известным значениям параметров в этих сечениях воспользуемся уравнением сохранения импульса (4) для свободного течения. Преобразуем уравнение (4), подставив известные  $\lambda_{6x}$ ,  $F_{6x}$ ,  $\lambda_a$ ,  $F_a$  (*a* – сечение отрыва на срезе сопла), а необходимый перепад давлений выразим уравнением

$$\Pi_{oc} = \left(\frac{\kappa+1}{2}\right)^{\frac{1}{\kappa-1}} \frac{f_{ex}-1}{\left[z(\lambda_{ex})-z(\lambda_{c})\right] q(\lambda_{c})}, \quad (8)$$

где  $f_{ex} = F_{ex} / F_c$ .

Под действием перепада  $\Pi_{oc} = p_{\kappa} / p_{\mu}$  и наружного давления  $p_{\mu}$  в струе происходит увеличение скорости газа от  $\lambda_{ex}$  до  $\lambda_{a}$ . В канале сопла для достижения скорости  $\lambda_{a}$  при безотрывном течении необходим перепад давлений  $\Pi_{oa} = p_{\kappa} / p_{a}$ 

$$\lambda_a = \sqrt{\left[1 - \left(\frac{1}{\Pi_{oa}}\right)^{\frac{\kappa-1}{\kappa}}\right] \frac{\kappa+1}{\kappa-1}} .$$
(9)

Искомое значение *m<sub>nped</sub>* определится из отношения

$$m_{nped} = \frac{\Pi_{oa}}{\Pi_{oc}} = \frac{p_{\kappa}}{p_{a}} \frac{p_{\mu}}{p_{\kappa}} = \frac{p_{\mu}}{p_{a}}, \qquad (10)$$

так как  $p_a = p_1$  – давление в потоке перед бочкой (перед сечением отрыва),  $p_H = p_2$  – давление за сечением отрыва (давление окружающей среды). Полученное значение  $m_{nped}$  будет соответствовать предельному режиму безотрывного течения на срезе сопла ( $m_{nped a}$ ). При  $\lambda_a = \lambda_x$  вычислим значение  $m_{nped x}$  для сечения x раструба сопла (для среза работающего участка сопла при отрыве). Степень нерасчетности действующего участка сопла определится отношением

$$n_x = 1/m_{npe\partial x} \,. \tag{11}$$

### Проверка адекватности

Для проверки адекватности проводились вычисления  $m_{nped}$  с использованием основных соотношений теории с последующим сравнением полученных результатов с экспериментальными данными, представленными уравнением (1). Заметим, что эти данные получены при продувках конических сопл воздухом. Сравнение опытных и расчетных данных проводились как для рабочего тела воздух ( $\kappa = 1,4$ ), так и для других газов: продуктов сгорания ракетных топлив ( $\kappa = 1,15$ ;  $\kappa = 1,25$ ), газов и паров ( $\kappa = 1,3$ ), углекислого газа ( $\kappa = 1,67$ ). Опытное значение ( $p_2 / p_1$ )<sub>оп</sub> сравнивалось с теоретическим значением ( $p_2 / p_1$ )<sub>T</sub> и определялось отклонение эксперимента от теории в процентах

$$\gamma = \frac{(p_2 / p_1)_{on} - (p_2 / p_1)_T}{(p_2 / p_1)_T} 100\%$$

В табл. 1 представлены результаты вычислений отклонений экспериментальных данных от теоретических, рассчитанных для различных газов. Как видно из табл. 1, эксперимент ( $\kappa = 1,40$ ) хорошо согласуется с теорией в диапазоне чисел Маха  $M_x = 1,0...2,0$ .

| Г | annia  | 1 |
|---|--------|---|
| L | аолица | 1 |

Отклонения результатов экспериментальных данных от теоретических при различных числах Маха

| 0 _1                    | Отклоне         | ния үв | % для газ | ов с отно | шением |
|-------------------------|-----------------|--------|-----------|-----------|--------|
| 1CJI<br>aXa             | теплоемкостей к |        |           |           |        |
| $^{\rm H}$ M $^{\rm M}$ | 1,15            | 1,25   | 1,30      | 1,40      | 1,67   |
| 1,00                    | 0,00            | 0,00   | 0,00      | 0,00      | 0,00   |
| 1,50                    | 6,93            | 6,53   | 6,35      | 6,00      | 5,27   |
| 1,75                    | 4,06            | 3,74   | 3,60      | 3,36      | 2,82   |
| 2,00                    | -0,53           | -0,71  | -0,77     | -0,89     | -1,06  |
| 2,50                    | -5,47           | -10,51 | -10,55    | -10,52    | -10,09 |
| 3,00                    | -18,25          | -19,28 | -19,47    | -19,54    | -18,82 |

Отклонения не превышают 6%.

При дальнейшем увеличении чисел Маха отклонения линии регрессии от теории увеличивается до -20%. Для чисел *M* > 5,0 погрешность регрессии достигает -50%.

Большой разброс экспериментальных точек, наблюдаемый в области больших чисел Маха (на графике [3]), подтверждает правдоподобность теории. Поэтому использование линейной регрессии допустимо только для  $M_x \le 2,0$ , что обеспечивает погрешности  $\gamma \le 6\%$ .

Для иллюстрации влияния нерасчетных режимов работы ракетного двигателя на его выходные параметры проведем расчет с исходными данными из примера [3], которые приведены в табл. 2.

Таблица 2

Исходные данные для расчета параметров РДТТ

| Отношение теплоемкостей рабочего тела сопла, к | 1,15  |
|------------------------------------------------|-------|
| Давление в камере РДТТ $p_{\kappa}$ , МПа      | 3,92  |
| Давление на срезе сопла $p_a$ , МПа            | 0,049 |
| Угол раствора сверхзвуковой части сопла 2, °   | 30    |

Давлению на срезе сопла соответствует высота полета *H* = 5700 м.

Результаты расчетов параметров РДТТ, работающего на различных режимах, сведены в табл. 3. Параметры РДТТ, работающего на различных высотах в атмосфере и под водой

| Тяга, отнесенная к тяге расчетного режима |           |               |  |  |  |
|-------------------------------------------|-----------|---------------|--|--|--|
| На высоте                                 | На уровне | Под водой на  |  |  |  |
| 5700 м                                    | моря      | глубине 100 м |  |  |  |
| 1,00                                      | 0,823     | 0,545         |  |  |  |

#### Заключение

 Перерасширение газа в соплах с раструбом зависит от физической возможности изменения поперечного сечения газа в свободной струе, когда на ее границах действует давление окружающей среды.

 Площадь сечения отрыва в сопле всегда равна максимальному сечению бочки.

 В целях согласования параметров камеры сгорания с параметрами газа в струе в уравнения ее движения необходимо ввести поправку на одномерный дополнительный импульс, действующий на газ со стороны стенки раструба сопла в направлении движения.

 Адекватность подтверждается большим количеством экспериментальных данных по исследованию условий отрыва в конических соплах при аэродинамических продувках.

 Состав рабочего тела не очень сильно влияет на параметры отрыва.

### Литература

 Синярев Г.Б., Добровольский М.В. Жидкостные ракетные двигатели. – М.: Оборонгиз, 1955. – 486 с.

 Алемасов В.Е., Дрегалин А.Ф., Тишин А.П. Теория ракетных двигателей. – М.: Машиностроение, 1980. – 533 с.

 Виницкий А.М. Ракетные двигатели на твердом топливе. – М. :Машиностроение, 1973. – 347 с.

 Абрамович Г.Н. Прикладная газовая динамика. – М.: Наука, 1969. – 624 с.

#### Поступила в редакцию 1.06.2007

**Рецензент:** д-р техн. наук, проф. В.В. Соловей, Институт Проблем машиностроения НАН Украины, Харьков.

Таблица 3