УДК 621.3.072.6

О.М. ЧЕКУНОВА

Харківський університет Повітряних Сил ім. І. Кожедуба, Україна

ФАЗОВИЙ ДЕТЕКТОР ІЗ НЕЛІНІЙНИМИ ЗАКОНАМИ АДАПТАЦІЇ СИСТЕМИ ФАЗОВОГО АВТОПІДСТРОЮВАННЯ СИНТЕЗАТОРА ЧАСТОТ

Досліджені властивості фазового детектору (ФД) з регулюванням коефіцієнта підсилення регульованого підсилювача за нелінійними законами регулювання виду: arctg (x) та \sqrt{x} , встановленого у ланцюгу зворотного зв'язку по фазі.

фазовий детектор, динамічно регулюємий зворотній зв'язок, система ФАП, нелінійний закон регулювання, коефіцієнт підсилення, динамічний діапазон ФМ

Вступ

Основною складовою удосконаленої системи фазового автопідстроювання (ФАП) синтезатора частот авіаційного засобу радіозв'язку є фазовий детектор з динамічно регулюємим зворотнім зв'язком (ФДДЗЗ) [4].

Створення процесу динамічного регулювання коефіцієнту підсилення РП саме за нелінійними законами регулювання дозволить принципово змінити характер перехідних процесів і властивості системи фазового автопідстроювання [3].

Мета даної статті полягає у дослідженні властивостей ФДДЗЗ, як складової удосконаленої системи ФАП, за нелінійними законами регулювання.

Викладення основного матеріалу

Фазовий детектор з динамічно регулюємим зворотнім зв'язком, на відміну від фазового детектора із зворотнім зв'язком, містить додатковий вхід регулювання коефіцієнту підсилення регульованого підсилювача (РП), що встановлений у ланцюгу зворотного зв'язку по фазі, і канал оцінки стану системи фазового автопідстроювання, що забезпечує динамічну зміну коефіцієнту підсилення регульованого підсилювача, а саме за arctg-ним та \sqrt{x} законами регулювання.

На рис. 1 представлена функціональна схема моделі фазового детектора з динамічно регулюємим зворотнім зв'язком.

Рис. 1. Функціональна схема моделі ФДДЗЗ:

а (t) – різниця фаз вхідного сигналу і сигналу з виходу ФМ;

β (t) – різниця між фазою вхідного сигналу та фазою на виході ФДДЗЗ

© О.М. Чекунова

Замінивши кожний функціональний елемент моделі ФДДЗЗ відповідною групою ланцюгів чи самостійним ланцюгом з урахуванням функцій, що ним виконуються, отримаємо структурну схему моделі ФДДЗЗ (рис. 2), яка відбиває всі перетворення, що в ній відбуваються.

Рис. 2. Структурна схема моделі ФДДЗЗ

На рис. 2 прийняті такі означення: $F_1(a)$ – нормована характеристика ФД1; E_1 – максимальна напруга, яку видає ФД1; $\Phi n(.)$ – нелінійна функція характеристики підсилення РП; Kn(.) – нелінійна функція характеристики управління коефіцієнту підсилення РП; $K_3(p)$ – передаточна функція РП; $IF_2(a - \beta')I$ – нормована характеристика ФД2; E_2 – максимальна напруга, яку видає ФД2; $K_2(p)$ – передаточна функція 2005 сигналу у ФО; C_1 – коефіцієнт перетворення частоти ГКН.

Система рівнянь, що описує ФДДЗЗ відносно різниці фаз β, має такий вигляд:

- для arctg-ного закону адаптації:

$$F_{1}(\beta) = F_{1} \{\beta + \psi(K_{0} - - arctg(F_{2}(\beta)|K_{3}(p)))F_{1}(\beta)K(p)\};$$

$$F_{2}(\beta) = F_{2} \{\beta - \beta' + \psi(K_{0} - - arctg(F_{2}(\beta)|K_{3}(p)))F_{1}(\beta)K(p)\},$$
(1)

-для \sqrt{x} :

$$F_{3}(\beta) = F_{3} \{\beta + \psi(K_{0} - - \sqrt{|F_{2}(\beta)|K_{3}(p)}F_{1}(\beta)K(p)\};$$

$$F_{4}(\beta) = F_{4} \{\beta - \beta' + \psi(K_{0} - - \sqrt{|F_{2}(\beta)|K_{3}(p)}F_{1}(\beta)K(p)\}\}$$
(1, a)

де ψ – максимальний динамічний діапазон ΦМ; K₀ – максимальний коефіцієнт підсилення РП.

Дослідження здібностей ФДДЗЗ відносно різниці фаз β дозволить вивчити його здібності як самостійного елемента системи ФАП та допоможе пояснити фізику процесів, що відбуваються в ній.

Розглянемо на початку випадок квазістатистичної зміни різниці фаз β , коли $p \equiv 0$. Так як різниця фаз змінюється квазістатистично, то впливом фільтру ФНЧ2 каналу оцінки стану і фільтруючими здібностями ФНЧ3 можна знехтувати, тобто $K_2(p) = K_3(p) = 1$, тоді системи рівнянь (1) та (1, а) приймуть наступний вигляд:

$$F_{1}(\beta) = F_{1} \{\beta + \psi(K_{0} - - - \operatorname{arctg}([F_{2}(\beta)]))F_{1}(\beta)\};$$

$$F_{2}(\beta) = F_{2} \{\beta - \beta' + \psi(K_{0} - - - \operatorname{arctg}([F_{2}(\beta)]))F_{1}(\beta)\};$$

$$F_{3}(\beta) = F_{3} \{\beta + \psi(K_{0} - - -\sqrt{|F_{2}(\beta)|}F_{1}(\beta)\};$$

$$F_{4}(\beta) = F_{4} \{\beta - \beta' + \psi(K_{0} - - -\sqrt{|F_{2}(\beta)|}F_{1}(\beta)\};$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(3)$$

З урахуванням синусоїдальних нелінійностей F₁

і F_2 , а також того, що $\beta' = \pi/2$, отримаємо:

$$F_{1}(\beta) = \sin \left\{ \beta + \psi(K_{0} - arctg(|\cos(\alpha)|))\sin(\alpha) \right\}$$

$$F_{2}(\beta) = \cos \left\{ \beta + \psi(K_{0} - arctg(|\cos(\alpha)|)\sin(\alpha)) \right\}$$
(3)

$$F_{3}(\beta) = \sin \left\{ \beta + \psi(K_{0} - \sqrt{\cos(\alpha)} \sin(\alpha)) \right\}$$

$$F_{4}(\beta) = \cos \left\{ \beta + \psi(K_{0} - \sqrt{\cos(\alpha)} \sin(\alpha)) \right\}$$
(3, a)

У (3) та (3, а) під знаком sin і соs записані вирази для α, внаслідок чого можливо отримати залежність β(α) відповідно для обох випадків:

$$\beta_1(\alpha) = \alpha - \psi \sin \alpha (K_0 - \operatorname{arctg}(\cos(\alpha))), \quad (4)$$

$$\beta_2(\alpha) = \alpha - \psi \sin \alpha \left(K_0 - \sqrt{\cos(\alpha)} \right). \quad (4a)$$

Подальші дослідження розіб'ємо на наступні етапи:

1) дослідження функцій $\beta_1(\alpha)$ та $\beta_2(\alpha)$;

2) отримання і дослідження статистичних характеристик $F_1(\beta)$ і $F_2(\beta)$.

Знайдемо похідні залежностей (4) та (4, а) $\beta_1 '(\alpha)$ та $\beta_2 '(\alpha)$:

$$\beta_{1}'(\alpha) = 1 - \psi \cos \alpha \left(K_{0} - arctg(|\cos \alpha|) - \frac{\psi \sin^{2} \alpha}{1 + \cos^{2} \alpha}; \right)$$
(5)

$$\beta_2'(\alpha) = 1 - \psi \cos \alpha \left(K_0 - \sqrt{|\cos \alpha|} \right) + \frac{\psi \sin \alpha}{2\sqrt{|\cos \alpha|}} \quad (5, a)$$

та дослідимо характер їх зміни. Виразимо *K*₀ через ψ. Отримаємо:

$$K_0 = \frac{1 + \psi arctg(|\cos(\alpha)|)\cos(\alpha) - \frac{\psi(1 - \cos^2(\alpha))}{1 + \cos^2(\alpha)}}{\psi\cos(\alpha)}; (6)$$

$$K_0 = \frac{\frac{\psi(1 - \cos^2(\alpha))}{2\sqrt{|\cos(\alpha)|}} + \psi\sqrt{|\cos(\alpha)|}\cos(\alpha) + 1}{\psi\cos(\alpha)}.$$
 (6, a)

Проаналізувавши (6) та (6, а), можна стверджувати, що із-за наявності $|\cos \alpha| = \sqrt{1 - \sin^2 \alpha}$ виникнуть стрибки.

Видно також, що змінюється знак граничних значень похідної, внаслідок чого будуть існувати екстремуми.

Всі отримані результати дослідження β'(α) зручно розташувати на площині (*K*₀, ψ). На рис. 3 представлена залежність K_0 від ψ для виразу (6), де $K_0 = K1$, на рис. 4 – для виразу (7) відповідно, де $K_0 = K2$.

Рис. 3. Залежність коефіцієнту підсилення РП з arctg-ним законом адаптації від динамічного діапазону ФМ

Рис. 4. Залежність коефіцієнту підсилення РП із законом адаптації √х від динамічного діапазону ФМ

Отримані результати досліджень показують, що для arctg-ного закону адаптації коефіцієнт підсилення максимальний при $\psi = 3,5$, для закону адаптації \sqrt{x} – при $\psi = 1,5$. Причому у випадку закону регулювання \sqrt{x} коефіцієнт підсилення РП на порядок вищий.

Результати досліджень дозволяють стверджувати, що очікуваний характер статистичних характеристик ФДДЗЗ можливо отримати вибором оптимального коефіцієнту підсилення РП.

Розглянемо тепер поведінку ФДДЗЗ у динамічному режимі, тобто у процесі биття, коли різниця фаз між коливаннями вхідного сигналу і фазою на виході генератора керованої напруги на протязі часу безперервно наростає. Для визначеності знак початкового розстроювання приймемо таким, щоб напрямок зміни фази у часі співпадав з напрямком осі абсцис.

На рис. 5 у загальному випадку представлена динамічна характеристика ФДДЗЗ.

Рис. 5. Динамічна характеристика ФДДЗЗ

Дякуючи безперервному наростанню різниці фаз у часі, робоча точка системи ФАП при досягненні екстремального положення на ділянці характеристики з позитивною крутизною стрибком переходить на таку ж робочу ділянку характеристики. У результаті динамічна характеристика ФДДЗЗ стає у загальному випадку асиметричною.

Крім цього, на виході детектора, крім напруги биття, з'являється постійна складова позитивного знаку, що збільшується з ростом *ψ*.

Постійна складова пропорційна площині замальованої фігури.

Наявність постійної складової напруги на вході управляючого елементу приводить до зменшення початкового розстроювання по частоті до деякого компенсованого значення та дозволяє зменшити і при визначених ψ вирівняти смугу захоплення і смугу утримання у системі ФАП.

Розрахуємо постійну складову на виході ФДДЗЗ. Середнє значення $F_1(\beta)$ та $F_3(\beta)$ за період:

$$U_{01} = \frac{1}{2\pi} \int_{0}^{2\pi} F_{1}(\beta) d\beta, \quad U_{02} = \frac{1}{2\pi} \int_{0}^{2\pi} F_{3}(\beta) d\beta. \quad (7)$$

Рахування інтегралу проведено у межах від β_0 до β_3 , на яких функції неоднозначні. На ділянках, де функції $F_1(\beta)$ та $F_3(\beta)$ однозначні, інтеграли обертаються у нуль.

Рахування інтегралів на ділянці]β₀;β₃[проведемо шляхом заміни змінної:

$$U_{01} = \int_{\beta_0}^{\beta_3} F_1(\beta_1) d\beta_1 = \int_{\alpha(\beta_0)}^{\alpha(\beta_3)} F[\beta_1(\alpha)] \frac{d\beta_1}{d\alpha} d\alpha =$$

$$\int_{\alpha(\beta_0)}^{\alpha(\beta_3)} \sin \alpha \frac{d\beta_1}{d\alpha} d\alpha,$$
(8)

$$U_{02} = \int_{\beta_0}^{\beta_3} F_2(\beta_2) d\beta_2 = \int_{\alpha(\beta_0)}^{\alpha(\beta_3)} F[\beta_2(\alpha)] \frac{d\beta_2}{d\alpha} d\alpha =$$

$$= \int_{\alpha(\beta_0)}^{\alpha(\beta_3)} \sin \alpha \frac{d\beta_2}{d\alpha} d\alpha.$$
(8, a)

Результати розрахунків приведені залежностями U_{01} та U_{02} від ψ , де $\psi = i$ (рис. 6).

Рис. 6. Постійна складова ФДДЗЗ

Крім того, на рис. 6 суцільною лінією представлена залежність U від ψ для лінійного закону адаптації з метою порівняльного аналізу лінійних законів адаптації з нелінійними в ланцюгу додаткового зворотного зв'язку.

Приведені дослідження ФДДЗЗ показують, що його здібності суттєво залежать від величини параметрів K_0 і ψ . Із збільшенням динамічного діапазону ФМ буде розширятися динамічний діапазон характеристики ФДДЗЗ, тим самим змінювати форму його характеристики. Тоді як збільшення K_0 призводить до звуження динамічного діапазону ФМ, а відповідно і динамічного діапазону характеристики самого ФДДЗЗ.

Постійна складова на виході фазового детектору з динамічно регулюємим зворотнім зв'язком у динамічному режимі з нелінійними законами адаптації більша, що свідчить про зменшення часу входження в синхронізм системи фазового автопідстроювання.

Висновок

Створення процесу динамічного регулювання коефіцієнту підсилення РП з нелінійними законами адаптації дозволило принципово змінити характер перехідних процесів і властивості системи фазового автопідстроювання синтезатора частот авіаційного засобу радіозв'язку.

Література

 Макаров С.А., Подоляко К.В. Система фазової автопідстройки з колом зворотного зв'язку, параметри якого регулюються динамічно // 1-й Международный радиоэлектронный Форум «Прикладная радиоэлектроника. Состояние и перспективы развития»: Сб. научн. тр. – Х.: АН ПРЭ, ХНУРЭ, 2002. – С. 494-497.

2. Макаров С.А., Качан М.В., Новіков М.І. Якісні методи опису поведінки системи фазової автопідстройки з колом додаткового зворотного зв'язку // Радіоелектронні і комп'ютерні системи. – 2003. – Вип. 4 (4). – С. 70-73.

 Макаров С.А., Семенякін С.І. Шляхи покращення динамічних властивостей аналогових систем фазової автопідстройки частоти. Збірник наукових праць. – Х.: Харківський інститут льотчиків ВПС, 1998. – Вип. 1.– С. 91-95.

 Філянін І.В. Фазовий детектор з динамічним зворотнім зв'язком // Збірник наукових праць XV ПС. – Х.: XУ ПС, 2005. – Вип. 1(1). – С. 85-88.

 Чекунова О.М., Макаров С.А., Коваленко Р.В.
 Аналіз принципів побудови швидкодіючих синтезаторів частот на основі систем фазової синхронізації // Системи озброєння та військова техніка. – 2006. – Вип. 1 (5). – С. 122-126.

Нетудыхата Л.И., Стеклов В.К. Системы фазовой автоподстройки в устройствах святи // Техника. – К., 2003. – № 4. – С. 368-371.

 Стеклов В.К. Комбинированные системы ФАП. – К.: Техника, 2003. – 323 с.

 Чекунова О.М., Макаров С.А., Чечуй О.В. Дослідження системи ФАП з нелінійними законами адаптації на стійкість // Системи управління, навігації та зв'язку. – К.: ЦНДІ УіЗ, 2007. – № 3. – С. 137-140..

Надійшла до редакції 25.10.2007

Рецензент: д-р техн. наук О.В. Лемешко, Харківський університет Повітряних Сил ім. І. Кожедуба, Харків.