УДК 629.7.036: 539.4

Ю.А. ЗЕЛЁНЫЙ, Р.Р. КЛИМИК, А.В. КРЫЛИК

Государственное предприятие «Ивченко-Прогресс», Украина

ПОВЫШЕНИЕ РАБОТОСПОСОБНОСТИ ОПОР ТУРБИНЫ ГАЗОТУРБИННЫХ ПРИВОДОВ

Рассмотрены результаты анализа температурного состояния задней опоры турбины ГТП Д-336 и его модификаций. Изложены результаты работ, направленных на улучшение ее работоспособности.

газотурбинный привод, опора турбины, температурное состояние, масляная полость, коксообразование, лакообразование, динамика температур, нормальный останов, аварийный останов, работоспособность

Введение

Во многих энергоёмких производствах широкое применение получила газотурбинная техника в виде приводов для электро- и газоперекачивающих станций [1].

Одним из видов такой техники стали газотурбинные приводы, созданные на базе авиационных газотурбинных двигателей (ГТД). Достоинством таких двигателей являются достаточно высокие значения коэффициентов полезного действия и высокие параметры термодинамического цикла [2]. Кроме того, они уже прошли цикл доводки при их создании и в процессе лётной эксплуатации.

Однако, высокие требования по ресурсу, и в связи с особенностью их работы в составе наземных газотурбинных установок, зачастую требуют модернизации отдельных узлов существующей конструкции с целью повышения их работоспособности.

Одними из таких узлов, являются узлы опор турбины и проблема улучшения их температурного состояния для условий эксплуатации в составе ГТП с целью обеспечение их длительной работоспособности в процессе выработки ресурса.

В настоящей работе изложены результаты поиска путей снижения температурного состояния масляной полости опоры СТ газотурбинного привода Д-336-1T/2T (и его модификаций).

1. Концепция исследований

Условия работы опор турбин авиационного двигателя при эксплуатации на летательных аппаратах и при эксплуатации в составе газотурбинного привода имеют существенные различия, которые сказываются на их температурном состоянии и работоспособности.

По сравнению с ГТП, авиационный двигатель практически не имеет аварийных остановов (АО) с высоких режимов работы, а если такой останов и произошел, то за счет авторотации от набегающего воздушного потока продолжается продувка, как газового тракта турбины с находящимися там "горячими" венцами рабочих и сопловых лопаток, так и вентиляция полостей вокруг опоры. Воздух, идущий на охлаждение опор, имеет более низкую температуру, поскольку основное время работы авиационных ГТД происходит в высотных условиях, где температура воздуха ниже. За опорой нет металлоёмких горячих конструкций (выхлопных шахт), которые могут влиять на её температурное состояние после останова в процессе естественного охлаждения.

Кроме того, в авиационных двигателях применяются более термостойкие (правда и более дорогие) смазочные масла. Ресурсы и межремонтная наработка в часах у ГТП значительно выше, чем ресурсы авиационных двигателей.

Такие различия отражаются на температурном состоянии и длительной работоспособности деталей опоры турбины при работе двигателя в составе ГТП, способствуют образованию на стенках масляной полости кокса и "лаковых" отложений, которые могут засорять фильтры, попадать на рабочие поверхности подшипников, изменять проходные сечения трубопроводов системы смазки и суфлирования.

2. Содержание работы

ГТП Д-336-1Т/2Т, создан на базе авиационного турбовального двигателя Д-136, который является силовой установкой тяжелого транспортного вертолета Ми-26.

При проведении регламентных работ ГТП через каждые 2000 часов, замечено появление частиц кокса на термостружко сигнализаторах (ТСС). При разборке и дефектации таких двигателей, в масляной полости опоры свободной турбины (СТ) в верхней части замечено коксообразование. Конструктивная схема опоры СТ и расположение точек замера представлена на рис. 1.

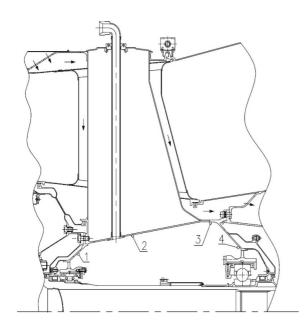


Рис. 1. Конструкция и схема препарировки масляной полости опоры CT

С целью выяснения причин такого явления было выполнено термометрирование стенок масляной

полости опоры термопарами по специальной программе.

В результате проведенного термометрирования получено температурное состояние внутренних стенок масляной полости опоры СТ на основных режимах работы ГТП и динамика изменения температуры стенок полости в процессе естественного охлаждения после нормального (НО) и аварийного (АО) остановов газотурбинного привода. Температуры стенок масляной полости на основных режимах работы ГТП имеют разные значения и изменение температуры в процессе охлаждения протекает по разному. Более высокая температура наблюдается в верхней части полости, более низкая в нижней, где всегда присутствует масляная "ванна".

Изменение температур масляной полости, в точках с максимальными и минимальными ее значениями, в процессе естественного охлаждения при нормальном и аварийном остановах приведены на рис. 2.

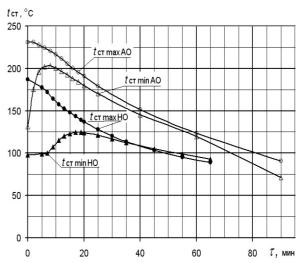


Рис. 2. Тепловое состояние стенок масляной полости опоры СТ и его изменение в процессе охлаждения

3. Результаты исследований

По результатам термометрирования, на номинальном режиме работы ГТП замеренная температура стенок масляной полости находится в пределах 85...230 °C. Более низкие температуры получены на

стенке в нижней части масляной полости, где всегда есть масляная "ванна", высокие — в верхней, где имеется наличие только капель и паров масла, уходящих в систему суфлирования. Из-за особенностей конструкции корпуса опоры СТ и выхлопной системы температура поверхности стенки полости в верхней части неравномерная и находится в пределах 104...230 °C. Самые высокие температуры стенки масляной полости получены в месте наиболее близко расположенном к горячим деталям системы выхлопа в верхней части масляной полости.

При нормальном останове температура стенки масляной полости с максимальным значением (188 °C на режиме холостого хода) в процессе естественного охлаждения снижается, а районы стенок с более низкой температурой (95 °C на режиме холостого хода) нагреваются через 16 минут до 125 °C, и не превышают максимальных температур на номинальном режиме. Через 40 минут естественного охлаждения температуры стенок полости выравниваются и снижаются до уровня 110 °C и продолжают снижаться дальше.

В процессе аварийного останова (АО), без охлаждения ГТП на низких режимах, температуры стенки в горячих местах сразу снижаются. Холодные места с температурой 130 °C через 8 минут естественного охлаждения нагреваются до температуры 210 °C, и через 40 минут естественного охлаждения все температуры стенок полости выравниваются и снижаются до уровня 150 °C, что выше, чем при нормальном останове. Результаты термометрирования указывают на то, что на стенке масляной полости есть участки с высокой температурой. Связано это с особенностью охлаждения и конструкции опоры и системы выхлопа.

Для улучшения температурного состояния стенок масляной полости были предложены и проверены испытаниями мероприятия, а именно:

- термоизоляция масляной полости;

- продувка стоек корпуса опоры СТ воздухом от постороннего источника (заводская магистраль);
 - местное охлаждение стенки полости маслом.

Температурное состояние масляной полости опоры СТ с мероприятиями по её улучшению приведено на рис. 3.

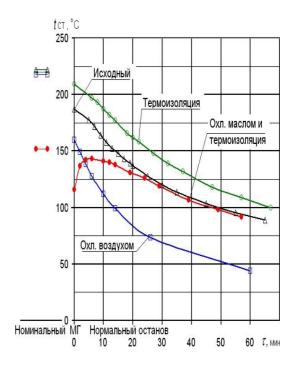


Рис. 3. Тепловое состояние стенок масляной полости опоры СТ с мероприятиями по его снижению (температуры максимальные)

Анализ температурного состояния стенок масляной полости в точках измерения на номинальном режиме работы ГТП и динамика ее снижения в процессе естественного охлаждения после нормального останова (НО) указывает на то, что:

- введение термоизоляции масляной полости приводит к незначительному снижению температуры стенки на номиальном режиме работы ГТП (на 5...15 °C), увеличению её температуры на режиме холостого хода, (\approx на 25 °C), а темп естественного охлаждения остается таким же как и при исходной кострукции опоры, но с превышением на 20...25 °C;
- введение продувки стоек корпуса опоры СТ воздухом от постороннего источника в течении всего времени работы ГТП и после нормального останова, приводит к незначительному, соизмеримому с

эффектом от термоизоляции, снижению температуры стенки масляной полости на номинальном режиме (\approx на 10 °C), к более низкой температуре на режиме холостого хода (\approx на 28 °C) и более интенсивному охлаждению опоры после нормального останова (НО) ГТП;

— мероприятия по охлаждению горячих мест на стенках масляной полости маслом (совместно с термоизоляцией) приводит к значительному (≈ на 90 °C) снижению температуры стенки на номинальном режиме, снижению её температуры на режиме холостого хода (≈ на 75 °C) и повышению температуры стенки (через 3 минуты до 140 °C) после выключения ГТП в процессе естественного охлаждения. Далее, в следствие прекращения подачи масла, динамика температур при охлаждении совпадает с динамикой температур при охлаждении опоры исходной конструкции.

При всех испытаниях сравнение и анализ производился по замеренным температурам в результате эксперимента. При переборках двигателя между испытаниями, из-за трудностей установки и вывода большого количества термопар из масляной полости, производилась их перестановка с более "холодных" мест в более "горячие" для получения более достоверной информации о "горячих" местах.

На основании анализа проведенных работ (рис. 3), наиболее весомое улучшение температурного состояние опоры СТ получено при ее дополнительном местном охлаждении маслом.

Хорошие результаты показало мероприятие с охлаждением опоры воздухом от постороннего источника в процессе останова ГТП и его охлаждения. Реализация такого охлаждения возможна при наличии источника воздуха на станциях в реальной эксплуатации.

Заключение

Проведенный комплекс работ по анализу температурного состояния масляной полости опоры СТ ГТП Д333-1Т/2Т и влиянию на него предлагаемых мероприятий, позволил найти и выбрать вариант, дающий наибольший положительный эффект по её снижению в условиях эксплуатации двигателя в составе наземной газотурбинной установки.

Таким вариантом является вариант с дополнительной подачей масла для охлаждения стенок масляной полости опоры.

Выбранное мероприятия можно рекомендовать для внедрения в профиль ГТП и базовый двигатель Д-136.

Авторы статьи благодарят инженера-исследователя Дорджиева Михаила Владимировича и всех сотрудников ЭИК ГП "Ивченко-Прогресс", принимавших участие в испытаниях.

Литература

- 1. Крайнов В.К., Салихов А.А. Повышение эффективности энергопроизводства // Теплоэнергетика. 1997. № 11. С. 26-30.
- 2. Гарковский А.А., Чайковский А.В., Лавинский С.И. Двигатели летательных аппаратов. М.: Машиностроение, 1987. 288 с.

Поступила в редакцию 7.05.2007

Рецензент: д-р техн. наук, проф. В.Н. Доценко, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.