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NEURAL NETWORKS-BASED GAS TURBINE FAULT RECOGNITION  
 

The main focus of this paper is reliable fault recognition for gas turbines. Gas path models are employed to 
describe different faults of variable severity. To recognize them, two methods are used and examined in the 
paper. The first method is based on the Bayesian recognition while the second applies neural networks. The 
recognition process for the both methods is simulated numerously under the conditions of random meas-
urement errors, and diagnosis errors are fixed. The objectives are to verify the methods statistically, adjust 
them, and compare the networks' recognition errors with the Bayesian recognition ones. To make the accu-
racy analysis more general, the paper compares the methods for two fault classification variants and differ-
ent gas turbine operating conditions.  
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Introduction 

 
High availability and limiting degradation are very 

important for the new generation of high temperature 

and high output gas turbines. Advanced condition moni-

toring systems for turbomachines have been designed 

and maintained over the recent decades. These systems 

include gas path analysis techniques to compute and 

correlate all performance variables of the engine gas 

path and, in so doing, relate fault parameters to meas-

ured variables. 

Although faults affect measured and registered gas 

path variables (pressures, temperatures, rotation speeds, 

and so on), the impact of changes in operational condi-

tions is much stronger. So, fault effects remain latent. 

That is why in diagnostic algorithms, raw measurement 

data should be subjected to a complex mathematical 

treatment to obtain the final result – identified faults of 

the gas turbine modules (compressors, combustion 

chambers, turbines). A number of negative factors, 

which are explained in more detail below, affect the 

diagnosis process and make it difficult to reach a correct 

decision. Thus engine fault localization presents a chal-

lenging recognition problem. 

A review of works on condition monitoring and fault 

detection [see 1 – 3, 8] reveals that simulation of diag-

nosed systems is an integral part of their diagnostic 

process. The models fulfill here two general functions. 

The first one is to give a gas turbine performance base-

line in order to calculate differences between current 

measurements and such a baseline. These differences 

(or residuals) depend little on variations of an opera-

tional mode and thus serve as reliable degradation in-

dices. The second function is related to fault simulation. 

The models connect different module degradation me-

chanisms and the mentioned residuals, assisting in this 

way with a fault class description. 

In first gas turbine health monitoring systems, any 

use of complex statistical recognition methods was too 

expensive in time and computer capacity. Therefore it 

was often decided to reduce processing requirements by 

simplifying diagnostic techniques. For example, Sara-

vanamuttoo and MacIsaac [3] proposed the the diagno-

sis by fault matrices where every class (fault signature) 

is represented by residual’s signs only. Other example 

of a simplified technique can be found in the paper by 

Pipe [4]. To reduce processing requirements, the author 

minimizes an axis set of the class’s recognition space. 

Both simplifications result in losses of available infor-
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mation that always lead to recognition errors. Our statis-

tical simulations of the diagnosis process have shown 

[see 5] that these errors can be great.  

Significant advances in instrumentation and com-

puter technology over recent years have resulted in 

incremental application of such innovative recognition 

tools as artificial neural networks. For example, Roemer 

and Kacprzynski [2] proposed techniques based on non-

linear gas path models, statistical neural networks, and 

probabilistic fault identification that promise high con-

fidence. Unfortunately, that work, as many others, lacks 

a numerical estimation of the method’s effectiveness 

and a comparison with other known techniques. 

Our recent researches [for instance, 6, 7] also in-

volve non-linear gas turbine models – static and dynam-

ic – for simulating gas path faults and neural networks 

for recognizing the faults. In contrast to the investiga-

tions cited previously, we approach the problem of gas 

turbine diagnosis reliability. Paper [6], for example, 

gives a preliminary comparison of three diagnostic 

methods where neural networks have demonstrated high 

accuracy.  

In present paper, we perform more thorough analysis 

in order to finally evaluate a networks’ diagnostic capa-

bility. Neural networks are evaluated by comparing 

them with Bayesian recognition on the basis of the 

probabilities of incorrect diagnostic decisions.  

The paper has the following structure. Section 2 de-

scribes applied gas path models. In section 3, the ap-

proach is given to verify the mentioned gas turbine 

diagnostic methods and compute probabilistic indices of 

method reliability. The methods are depicted in sections 

4 and 5 and compared in section 6 on basis of the reli-

ability indices. Section 7 describes neural network ap-

plication to diagnosis under transient conditions. 

 
1. Gas path Models 

 
A computer model can easily generate a lot of diag-

nostic information that would be hard and sometimes 

nearly impossible to gather on a real gas turbine engine. 

For example, engine behavior can be assessed by a 

model under all possible operating conditions whereas 

field restrictions make operation diapasons of a real 

engine much narrower. 

As pointed before, residuals are a necessary prelimi-

nary operation for the diagnosis process [see 1, 7]. They 

may be presented as relative changes of gas path va-

riables 
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where *Y is a measured value, )(0

UY  is a base-line 

value, which depends on a vector 


U  of control va-

riables (fuel consumption etc) and ambient conditions 

(air pressure, temperature, and humidity). Hence, a 

vectorial function )(0

UY  that unites the residuals for all 

measured variables may be interpreted as a model of 

normal gas turbine behavior. 

There can be two options to compose such a normal 

state model: any abstract function and a physical model. 

The second order four arguments full polynomial is able 

to correctly describe engine behaviour [see 7] and pro-

vides an example of abstract function. To compute a 

priori unknown coefficients, this model needs to be 

identified on plenty of registered data within a wide 

range of operational conditions.  

The option of a physical model can be presented by 

the non-linear thermodynamic model [see 3, 8], in 

which every module is described by its performance 

map. Due to the objective physical principles imple-

mented the model has a capacity to reflect the normal 

engine behaviour. Moreover, since the faults affect the 

module performances involved in the calculations, the 

thermodynamic model is capable to simulate gas turbine 

degradation. 

To this end, the model includes correction factors 


  

that permit to displace the module maps of perform-

ances and in this way take into account a fault severity 
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growth. Consequently, the thermodynamic model pre-

sents a vector function ),(

UY , which is computed as 

a solution of the algebraic equations system reflecting 

the conditions of gas turbine modules' combined work. 

In addition to the thermodynamic model, a linear 

model 


 HY                            (2) 

is widely used in diagnostics. It connects small relative 

changes 

  of the correction factors with relative 

deviations 


Y  of gas path variables by a matrix H of 

influence coefficients.  

Changes 

  introduced into a model – nonlinear or 

linear – for fault simulating produce the corresponding 

deviations 


Y . What is the difference between these 

simulated deviations 


Y  and the residuals 


 *Y  based 

on real measurements? Ideally, they should be equal; 

however, every vector has its own errors. 

This paper accepts the hypothesis that the model 

adequately describes the mechanisms of gaspath deteri-

oration; consequently, the vector 


Y  is free of errors. 

With respect to the vector 


 *Y , its errors occur due to 

measurement errors in 


*Y  and 


U  as well as possible 

inherent inaccuracy of the function )(0

UY . It is sup-

posed that a systematic component of total errors does 

not depend on a deterioration development and a ran-

dom component is normally distributed. 

 
2. Common Approach  

to Diagnosis Reliability Estimation 
 
In addition to forming a classification and a class re-

cognizing, a total diagnosis process supposes an impor-

tant stage of reliability estimating. The description be-

low places emphasis on this stage.  

Since an existing variety of the faults is too great to 

distinguish them, the faults should be divided into li-

mited number of classes. However, real faults appear 

rarely and their displays depend on a fault severity, 

engine type, and operational conditions. For this reason, 

a model-based classification is formed. It is widely used 

in gas turbine diagnostics [see, for example, 8]. 

In this paper, the thermodynamic model is used to 

describe the faults. Then the fault classification is drawn 

up in the space 

Z  of normalized residuals 
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Here iY  is a random error amplitude of the devia-

tions )]([ 0


 UYY ii  and m is a number of analyzed va-

riables. A vector 


*Z  corresponding to the measurement 


*Y  is formed in the same way as the vector 

Z . 

The hypothesis is accepted that an engine state D 

can belong to only one of q previously determined 

classes qDDD ,...,, 21 . The classes are constructed and 

the diagnosis process goes in the space of residuals (3).  

Two types of classes are concerned: single and mul-

tiple. The single type class has one independent parame-

ter of fault severity, e.g. one correction factor or some 

correction factors changed proportionally. This type is 

convenient to describe any well-known faults of varia-

ble severity. In contrast to the single type class, the 

multiple type class has more than one independent pa-

rameter, e.g. some correction factors. This class type 

may be useful to combine some faults (for instance, the 

faults of one component) when their own displays and 

descriptions are uncertain. 

A nomenclature of possible diagnosis qddd ,...,, 21  

corresponds with the accepted classification 

qDDD ,...,, 21 . To make a diagnosis d, a method depen-

dent criterion ),( *
jj DZRR



  is introduced as a close-

ness measure between a current residual vector 


*Z  
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(pattern to be recognized) and every item Dj of the clas-

sification. A decision rule 

),...,,max(  if  21 qll RRRRdd              (4) 

is then established.  

Various negative factors affect the diagnosis process 

and the final diagnostic decision d. In order to ensure 

the diagnosis d, it needs to be accompanied by any con-

fidence assessment. 

For this reason, mean probabilistic confidence cha-

racteristics are computed for the examined methods by a 

statistical testing procedure. Inside this procedure, nu-

merous cycles of a method action are repeated. In every 

cycle, the procedure generates random numbers of the 

current class, fault severity, and measurement errors 

according to the chosen distribution laws, then com-

putes actual pattern 


*Z , and finally makes a diagnostic 

decision d corresponding to this pattern. A qq  diag-

nosis matrix Dd accumulates diagnostic decisions ac-

cording to the rule 

)(),1 ljljlj ddDD( if  DdDd  . 

All simulated patterns 


*Z  compose a testing set *Zt  of 

a volume Nt corresponding to the total number of cycles. 

After testing cycles and diagnosis accumulation are 

over, the matrix Dd is transformed into a diagnosis 

probability matrix Pd of the same format by a normali-

zation rule 





q

l
ljljlj DdDdPd

1
.                  (5) 

The diagonal elements jjPd  present indices of dis-

tinguishing possibilities of the classes. Quantities 

jjj PdP 1                          (6) 

make up a vector of false diagnosis probabilities 

P . A 

scalar P  that is computed as a mean number of the 

probabilities (6) characterizes the total level of diagno-

sis errors. The indices 

P  and P  will be applied below 

to adjust and compare recognition techniques under the 

following common conditions.  

A. Gas turbine operational conditions: 11 gas tur-

bine modes established by different compressor rotation 

speeds under standard ambient conditions are analyzed. 

The most of calculations are executed for the maximal 

power mode called regime 1. 

B. Measured parameters’ structure and accuracy 

correspond to a gas turbine regular measurement system 

which includes 6 gaspath variables. The fluctuations of 

the residuals (2) based on the measured parameters are 

assumed to be normally distributed. 

C. Classification parameters. Two classification var-

iations are considered. The first incorporates nine single 

classes and every one is constituted by a variation j  

of one correction factor. The second includes four mul-

tiple classes corresponding to the main modules (com-

pressor, combustion chamber, compressor turbine, free 

turbine). Every multiple class is formed by independent 

variations of two correction factors of the same engine 

module and describes possible faults of the module. All 

variations j , which represent here fault severities, 

are uniformly distributed within the interval [0, 5%]. A 

priory probability of the classes also has a uniform dis-

tribution, so every class is equally probable.  

D. Testing set volume. The number Nt is chosen as a 

result of trade-off between a time T to execute the pro-

cedure and a computational precision of the described 

indices. In any case, uncertainty in the probabilities 

should be less than the studied effects of the method 

replacement or changes in diagnosing conditions. 

Analysis of an averaged probabilities precision helped 

to establish the set volume as a function of class num-

ber: Nt = 1000 q. 

In the next two sections, two algorithms correspond-

ing to the mentioned methods are considered for gas 

turbine diagnosis. The first is based on the Bayesian 

approach and needs that every class be described by its 

probability density function. The second employs the 

neural networks and implies class representation by a 

sample of patterns. 
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3. Algorithm 1: Bayesian Recognition 
 

For actual measurement 


*Y  and corresponding 


*Z  

the Bayes formula defines a posteriori probabilities: 
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where P(Dj) is a priory probability of the class Dj and 

)/( *
jDZf



 is its pattern density function. 

Density function assessment is a principal problen in 

statistics. To simplify it in the presented investigation, 

the function )/( *
jDZf



 is determined by elemental 

distributions )/( jDZf


 and )/*(

ZZf  







j

jjj dDZfZZfDZf )/()/()/( ** .         (8) 

Additionally, the following assumptions were made: 

1) adequacy of the linear model (2) applied to simulate 

faults, 2) uniform distribution )/( jDZf


 of the model 

values 

Z  with a different fault severity, 3) normal dis-

tribution )/*(

ZZf  of residual errors. 

According to the Bayesian rule, the recognition de-

cision dl is made when *)/(

ZDP l  is maximal in the 

set *)/(

ZDP j , j = 1 – q. This rule corresponds with 

the general rule (4).  

The diagnostic algorithm based on the Bayesian rec-

ognition (algorithm 1) has been elaborated and inserted 

into the testing procedure described above. 

As noted above, the Bayesian recognition is not 

without its difficulties. Only the simple structure classes 

that are based on the linear model and ordinary theoreti-

cal distributions can be analyzed. That is why a class 

representation directly by the patterns of measured va-

riables is considered too, as well as algorithm 2 that is 

capable of treating them.  

4. Algorithm 2: Neural Networks 
 
The representation by the patterns permits simulat-

ing the fault classes of complex structure. For instance, 

a nonlinear thermodynamic model can be used, and the 

classes described by three and more correction factors 

can be analyzed. Furthermore, this permits direct form-

ing the real data-based classes, without any model assis-

tance and consequently without negative influence of 

model proper errors. 

To solve difficult pattern recognition problems, a 

multilayer perceptron is successfully applied [see 9, 10], 

since a back-propagation algorithm has been proposed 

to train them. That is why back-propagation networks 

were chosen for gas turbine diagnosis. The employed 

networks have the structures that are partially deter-

mined by the measurement system and fault classifica-

tion compositions. 

The input layer incorporates six nodes, which cor-

respond to a residual vector dimension. The output layer 

points to the concerned classes and therefore includes 

nine elements for the single type classification and four 

elements for the multiple one.  

Within the statistical testing procedure, the described 

network passes training and verification stages. To train 

neural networks, a reference set *Zr  of the volume Nr = 

= 1000 q is composed in the same manner as the testing 

set *Zt . The verification stage follows then, at which 

the probabilities Р


 and P  (error probabilities) are 

computed on the testing set.  

The testing procedure was repeated many times in 

order to choose the best parameters of the classification 

and network, namely a reference set volume, hidden 

layer size, training algorithm variation, and training 

algorithm epoch number. It was also established that 

one hidden layer of 12 nodes is the most appropriate and 

the epoch number 200 guarantees a network complete 

training as well as absence of the over-teaching.  

To sum up sections 4 and 5, two approaches to gas 

turbine diagnosis were adopted and statistically tested 

by the procedure described above.  
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5. Comparison of the Algorithms 
 
Since the Bayesian recognition (algorithm 1) mini-

mizes average false recognition probabilities [see, for 

example, 11], it is used as a standard technique for eva-

luating algorithm 2. The algorithms comparison is con-

ducted for two classification variations as described in 

section 3.  

Table 1 contains the resulting probabilities P  and 

helps to estimate averaged diagnosis errors for the com-

pared algorithms.  

As can be seen, the probability differences between 

the algorithms, –0,050 for single type classification and 

+0,037 for the multiple type classification, are noticea-

bly lower then probability levels.  

 
Table 1 

Mean probabilities of false diagnosis 
 

Algorithms 
Type of classes 

Single Multiple 
Bayesian approach 0,1822 0,1256 
Neural networks 0,1772 0,1293 
Difference –0,0050 0,0037 

 

More detailed analysis can be performed with the 

probabilities that are individual for every class, i.e. 

vector 

P  elements. The probability shifts induced by 

the change from algorithm 1 to algorithm 2 are given in 

Table 2. It can be seen that the differences in false prob-

abilities between the algorithms are slight for all classes. 

Average absolute shifts P  for single and multiple 

classes are 0,014 and 0,007 correspondingly.  

To ensure the results and preliminary conclusions, 

the statistical testing procedure with algorithm 2 was 

repeated 10 times (option of the single type classifica-

tion) with different random number series. As a result, 

average values M(P) and standard deviations (P) of the 

error probabilities have been computed. The resulting 

statistics are placed in Table 3. Comparing tables 2 and 

3 it can be seen that differences in diagnosis accuracy 

between the analyzed algorithms are smaller then inac-

curacy intervals. 

Table 2 

False probabilities' shift for algorithm 2 
 

Indices Type of classes 
Single Multiple 

 
 
 


 P  
 
 

1d  
+0,021 –0,005 

2d  
+0,011 –0,002 

3d  
+0,008 +0,012 

4d  
–0,005 +0,010 

5d  
+0,001 – 

6d  
–0,002 – 

7d  
–0,023 – 

8d  
–0,039 – 

9d  
–0,022 – 

P  0,014 0,007 
 

Table 3 

Statistical parameters of the error 
probabilities (stationary case) 

 

Stati-
stics 


P  P  

d1 d2 d3 d4 d5 
M(Pe) 0,283 0,270 0,221 0,423 0,215 0,234 
(Pe) 0,017 0,015 0,010 0,031 0,011 0,004 
Stati-
stics 


P  P  

d6 d7 d8 d9  
M(Pe) 0,020 0,222 0,225 0,227  0,234 
(Pe) 0,004 0,013 0,012 0,017  0,004 
 

To make a broader conclusion about network effec-

tiveness, in addition to the previous calculations ex-

ecuted for the mode 1, the statistical testing and method 

comparison were repeated for the other operating points. 

The results were very similar: algorithm 2 was always 

close to the algorithm 1. 

Thus, we arrive at an important conclusion that ar-

tificial networks do not practically yield to the Bayesian 

approach when applied to gas turbine diagnosis. These 

positive results of network evaluation under steady state 

conditions encouraged us to develop a network-based 

diagnosis algorithm for transient conditions [12]. With 

respect to the Bayesian approach, it seems to be too 

difficult to compute integral (8) at transients. 

The next section describes conditions and the accu-

racy analysis of diagnosis at transients. 
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6. Network Application  
for Transient Conditions 

 

Extending the explanation given in section 3 for 

steady states, a generalized deviation vector 


*W  is 

determined under dynamic conditions as follows. Tran-

sients of normal (healthy) and faulted engines are di-

vided into time-points. The deviations are determined 

on the next step for every pair of similar points of 

“faulted” and “normal” trajectories; errors are added 

then. Finally, the generalized vector 


*W  is composed 

from all successive deviations of trajectory points.  

In the actual analysis, seven variables are monitored. 

A transient trajectory includes 14 time-points. The vec-

tor 


*W , a pattern to be recognized, consists of 

14  7 = 98 elements. The classification consists of 

eight single faults classes. The optimal hidden layer 

number is 25. So, the network has a structure 

"98×25×8". Other conditions of the analysis, including 

pattern number 1000 to describe one class, are equal to 

the conditions given in sections 3 and 5.  

A calculation under the noted computational condi-

tions called a basic calculation has acceptable execution 

time of 8 minutes (PC with Pentium IV). A mean prob-

ability of the correct diagnosis works out at 0.886 (error 

probability 0,114) for this calculation.  

As before in the case of static conditions, the basic 

calculation was repeated 10 times with different random 

number series. New average values M(P) and standard 

deviations (P), which characterize a computational 

inaccuracy at transients, are placed in Table 4. Compar-

ing tables 3 and 4, it can be seen that reduction in diag-

nosis inaccuracy is considerable for every class and in 

general: the average losses decrease in two times. This 

positive effect is considerably greater than the computa-

tional inaccuracy. 

In addition to the basic calculation, 15 different cal-

culations at different transient conditions (engine acce-

leration or deceleration, transient profile, ambient air 

temperature) were made. The obtained probability of the 

correct diagnosis worked out at 0,896 – 0,841 (on aver-

age 0,876). 

In general, it can be stated that neural networks ap-

plication for diagnosis under transient conditions en-

hances essentially the gas turbine diagnosis reliability. 

 
Table 4 

Statistical parameters of the error 
probabilities (transient case) 

 

Stati-
stics 


P  P  

d1 d2 d3 d4 
M(Pe) 0,081 0,193 0,082 0,189 0,118 
(Pe) 0,09 0,015 0,018 0,023 0,003 

Stati-
stics 


P  P  

d5 d6 d7 d8 
M(Pe) 0,089 0,104 0,100 0,108 0,118 
(Pe) 0,006 0,012 0,009 0,013 0,003 

 

Conclusions 
 
In this paper, a statistical testing has been discussed 

of gas turbine diagnosis by means of neural networks 

and the Bayesian recognition. A thermodynamic model 

served to simulate gas turbine degradation and form a 

faults classification. The purpose was to compare neural 

networks with the Bayesian recognition using the latter 

as a standard technique with limit properties. Diagnosis 

reliability indices – averaged probabilities of true/false 

diagnosis – were criteria of the comparison. 

The diagnosis algorithm applying back-propagation 

networks has demonstrated a high reliability. Tt was 

quite close to the algorithm based on the Bayes formula 

in different conditions of application.  

On basis of common approach to gas turbine diag-

nosis involving artificial neural networks, a new diag-

nostic algorithm has been developed to be applied at 

transients. During the experimentation a reachable accu-

racy level of gas turbine diagnosis was estimated. It was 

pointed out that the change to the diagnosis at transient 

can reduce false diagnoses in two times. 

So, neural back-propagation networks can be rec-

ommended for a practical use in condition monitoring 
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systems both at steady states and at transients. Since the 

Bayesian approach has an advantage of accompanying 

every diagnosis by its probability, this approach may 

also be recommended when we are able to describe the 

fault classes by their density functions. 
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