УДК 621.5.049

И.И. ПЕТУХОВ, Ю.В. ШАХОВ, В.Н. СЫРЫЙ

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

ИССЛЕДОВАНИЕ ИСТЕЧЕНИЯ ВСКИПАЮЩЕГО ПАРАВОДОРОДА ИЗ СОПЛА СТРУЙНОГО ОХЛАДИТЕЛЯ

Приведены результаты экспериментального исследования вскипающего потока жидкого параводорода в сопле Лаваля. На основании данных о структуре двухфазного потока, распределении статического давления вдоль оси сопла, температуре и расходе получены данные об условиях начала процесса парообразования. Предложена зависимость для определения величины перегрева жидкого параводорода в процессе адиабатного истечения в сопле.

параводород, струйный охладитель жидкости, вскипающий поток, сопло Лаваля, метод расчета

Перспективность водорода как эффективного горючего и энергоаккумулирующего вещества в настоящее время уже не вызывает сомнений. Большие его количества предпочтительно хранить в жидком состоянии. Однако низкие рабочие температуры жидкого водорода и значительные объёмы водородных баков вследствие малой его плотности определяют необходимость обеспечения высокоэффективной теплоизоляции элементов конструкций. Весьма сложной задачей становится и обеспечение температурного режима подачи криогенного горючего. Низкий температурный напор в теплообменникахрекуператорах, отсутствие или крайне высокая стоимость внешних охладителей требуемой мощности делают актуальным создание альтернативных устройств, обеспечивающих заданную температуру подачи жидкого водорода.

К таким устройствам относятся, в частности, малогабаритные струйные охладители жидкости (СОЖ) [1], реализующие быстрое охлаждение (до 600 К/с) жидкости за счет частичного её испарения. Создание эффективного СОЖ невозможно без достоверных математических моделей рабочего процесса в его элементах и экспериментальных данных, без методики профилирования проточной части. Сложность и разнородность рабочих процессов, проходящих в элементах СОЖ, затрудняет создание единой математической модели для устройства в целом. Вследствие этого используется поэлементное описание СОЖ.

Важным элементом СОЖ, в котором собственно реализуется охлаждение жидкости, является сопло. Наряду с охлаждением здесь необходимо обеспечить и эффективный разгон жидкости при истечении вскипающего потока. Имеющиеся дифференциальные методики для расчета сопел [2, 3 и др.] громоздки, сложны и малоприемлемы в силу большой продолжительности счета для оперативных расчётов параметров СОЖ при быстро меняющихся внешних условиях. Кроме того, они неизбежно содержат эмпирические корреляции, нуждающиеся в экспериментальной проверке для каждой жидкости. Поэтому для расчета характеристик сопла СОЖ в данной работе предлагается упрощённый полуэмпирический метод, базирующийся на соответствующей дифференциальной модели [2, 3] адиабатного истечения вскипающей жидкости и экспериментальных данных.

Дополнительным доводом в пользу использования такого подхода является сложившаяся практика профилирования сопел СОЖ. Конфузорная часть сопла профилируется с постоянным углом схождения либо по методу Витошинского, а диффузорная имеет постоянный угол раскрытия, обеспечиваю-

© И.И. Петухов, Ю.В. Шахов, В.Н. Сырый АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2007, № 9 (45) щий безотрывное истечение вскипающего потока. Сопрягаются обе части по радиусу.

Условные обозначения: *P* – давление; *Q* – объемный расход; *T* – температура; *W* – скорость; *v* – коэффициент кинематической вязкости; СОЖ – струйный охладитель жидкости. Индексы: *l* – жидкая фаза; *s* – сечение закипания; *кр* – критический; *вх* – входное сечение.

Экспериментальное исследование процессов вскипания криогенных жидкостей в сопле Лаваля производилось в ходе отработки СОЖ на стенде, выполненном по разомкнутой схеме. Конфузорная часть сопла выполнена с углом схождения 30°, радиус сопряжения 50 мм. Процессы истечения из сопла Лаваля исследовались для жидкого водорода при различных параметрах на входе. В ходе экспериментов измерялись статическое давление, температура, расход и сплошность потоков на входе и выходе СОЖ, распределение статического давления вдоль плоского сопла Лаваля, а также статическое давление и температура в сепараторе и диффузоре СОЖ. Измеренные параметры автоматически регистрировались. Температура и давление на входе в СОЖ менялись в диапазоне $\tau = \frac{T_{ex}}{T_{\kappa p}} = 0,75...0,88$ и

$$\pi = \frac{P_{ex}}{P_{\kappa p}} = 0,37...0,68$$

Для построения расчётных соотношений использовалась система обычных дифференциальных уравнений теоретической модели [2, 3] и измеренные в опыте расход жидкости и распределение статического давления вдоль сопла.

Сопло СОЖ разделяли на три части. Область гидравлического течения располагалась от входа в сопло до сечения, в котором начинается процесс парообразования. Область пузырькового течения находилась между сечением вскипания и сечением инверсии. Далее до среза сопла расположена зона паро-капельного течения.

Важность точного определения параметров в се-

чении закипания определяется тем, что они являются исходными данными для расчета параметров в расширяющейся части сопла. Поэтому задаче точного определения статического давления в этом сечении и, соответственно, максимального перегрева жидкости до вскипания уделяется большое внимание. В работе [4] было предложено обобщенное соотношение в виде степенной зависимости, связывающее температуру и давление в сечении вскипания для жидкого азота, углекислоты и воды:

$$\frac{T}{T_{\kappa p}} = 1,011 \cdot \left(\frac{P}{P_{\kappa p}}\right)^{0,1162} \text{ при } \frac{P}{P_{\kappa p}} < 0,5 \text{ ; (1)}$$
$$\frac{T}{T_{\kappa p}} = \left(\frac{P}{P_{\kappa}}\right)^{0,1046} \text{ при } \frac{P}{P_{\kappa p}} \ge 0,5 \text{ . (2)}$$

При этом была сделана попытка учесть также влияние геометрии сопла. Отмечалось, что уменьшение начального недогрева жидкости ведет к возрастанию термической неравновесности потока. Упоминалось влияние и скорости потока, однако в предложенном соотношении это не отражено.

Результаты расчёта на основе указанных соотношений приведены на рис. 1. Для определения экспериментальных значений давления в сечении закипания было использовано известное соотношение для объемного расхода через сопло

$$Q = \mu_s \cdot f_s \cdot \sqrt{2 \cdot \frac{P_{ex} - P_s}{\rho_L^0}} .$$
(3)

Здесь P_s – давление в сечении закипания, f_s – его площадь, причем наиболее важными являются последние два параметра. Коэффициент расхода μ_s учитывает коэффициент скорости суживающейся части и сужение струи, может определяться для случая гидравлического истечения и для рассматриваемого сопла составляет 0,94.

Критическое сечение может не совпадать с геометрическим горлом сопла. В то же время в этой окрестности горло сопла является единственной геометрической величиной, которая может быть определена с удовлетворительной точностью. С другой стороны, профиль статического давления в области, примыкающей к горлу сопла, характеризуется значительной крутизной (рис. 2), что ведет к значительным погрешностям из-за недостоверного определения положения критического сечения, поток в котором может быть ещё и неоднороден. Поэтому при создании упрощенной одномерной модели истечения вскипающего потока следует использовать в качестве площади критического сечения площадь горла сопла как определяющую величину. Возможные неточности могут учитываться за счет определения значения расчетного давления в сечении, которое и будет определять расходную характеристику сопла. Значения давления, определённые на основе изложенной методики с учётом экспериментальных данных (табл. 1) по расходу приведены на рис. 1 Очевидно, что зависимость (1) неудовлетворительно описывает процесс вскипания для водорода, давая систематически заниженные значения давления в сечении вскипания. Следует заметить, что расхождение больше для жидкости с меньшим на- $\Delta T_{H} = T_{01} - T_{SAT} \left(P_{ex} \right)$ чальным недогревом И уменьшается с увеличением последнего. Расчетная модель, использованная в [5], предполагала подачу на вход в сопло недогретой жидкости и положение сечения закипания за горлом сопла.

Рис. 1. Сравнение данных экспериментов 1213 и 1214 с зависимостью В.Г. Тонконога [4]. 1 – график, рассчитанный по зависимости (1); ■ – экспериментальные данные 1213 и 1214

Рис. 2. Статическое давление в тракте сопла СОЖ при истечении параводорода

Более точно описывает перегрев жидкости в сечении закипания зависимость

$$P_{SAT}(T_{ex}) - P_s = \chi_1 + \frac{\chi_2}{\operatorname{Re}_s^n}, \qquad (4)$$

где χ_1 , χ_2 – постоянные для каждого криогенного компонента коэффициенты, имеющие размерность давления; $\text{Re}_S = \frac{D_{3\kappa\theta} \cdot W_{LS}}{v_S}$ – число Рейнольдса для потока в горле сопла; $D_{3\kappa\theta}$ – эквивалентный гидравлический диаметр горла сопла. Коэффициенты χ_1 , χ_2 определяются капиллярными эффектами, числом и размерами жизнеспособных зародышей паровой фазы. Число Рейнольдса в соотношении (4) характеризует начальный недогрев жидкости.

Выбор такой формы зависимости имеет ряд преимуществ по сравнению с (1). Так, здесь учтено влияние скорости потока на величину перегрева жидкости в сечении закипания, что отмечалось в [2]. С другой стороны, скорость также выражает влияние начального недогрева жидкости. Рассмотренное соотношение обеспечивает более высокую точность вычисления давления в сечении закипания для малых начальных недогревов, характерных в области рабочих параметров СОЖ. Для жидкого параводорода по экспериментальным данным найдены следующие значения коэффициентов $\chi_1 = 574100$, $\chi_2 = -1,167 \cdot 10^9$, n = 0,5. Расчетное давление в сечении закипания приведено в табл. 1 под обозначением P_{sp} и на рис. 3.

Таблица 1

Параметры в сопле СОЖ при истечении жидкого параводорода

N⁰	<i>Т</i> _{вх} ,	P_{ex} ,	т,	P_s ,	P_{sT} ,	P_{sp} ,
	К	кПа	кг/с	кПа	кПа	кПа
1213.005	26,66	663	1,91	205	205	211
1213.044	26,48	663	1,93	200	194	197
1213.061	26,41	667	1,94	201	189	192
1213.075	26,37	667	1,94	201	187	189
1213.100	26,32	667	1,95	199	184	185
1213.131	26,36	577	1,76	192	186	202
1213.200	26,29	577	1,77	190	182	197
1213.265	26,70	483	1,30	269	207	280
1213.290	26,77	483	1,24	288	212	294
1214.007	28,87	667	0,92	552	406	535
1214.071	28,81	667	1,09	507	400	495
1214.108	28,20	589	0,91	480	333	474
1214.208	27,18	493	0,78	416	242	426
1214.272	27,26	667	1,83	241	248	267

 [–] экспериментальные данные 1213 и 1214

Предложенная зависимость позволяет определить параметры в сечении закипания для жидкого параводорода при различных степенях недогрева на входе.

Литература

Струйная система утилизации жидкого водорода при испытаниях насоса ГТД / И.И. Петухов,
 Ю.В. Шахов, В.Н. Сырый, Ю.Е. Давыдов,
 И.П. Косицын // Авиационно-космическая техника и технология: Сб. научн. тр. – Х.: ХАИ, 1997. – Вып. 4. – С. 364-369.

2. Сырый В.Н., Петухов И.И., Блинков В.Н. Исследование течения вскипающего водорода в соплах Лаваля // Газотермодинамические процессы в энергоустановках с многофазным рабочим телом. – 1990. – С. 10-15.

3. Петухов И.И., Сырый В.Н. Численное моделирование вскипающих потоков криожидкостей с кристаллизацией капель // Авиационно-космическая техника и технология: Научн.-техн. журн. – 2005. – № 1 (17). – С. 30-33.

4. Тонконог В.Г., Гортышов Ю.Ф. Фазовые переходы в потоке жидкости // Тр. 5-й Междунар. конф. по тепло- и массобмену. – Минск, (24-28 мая 2004 г.). В 10-и т. – Т. 5. Тепломассообмен в двухфазных (парожидкостных) системах. – Минск, 2004. – С. 453-459.

5. Тонконог В.Г. Термическая неравновесность процесса истечения вскипающих жидкостей // Тр. 2-й Российской нац. конф. по теплообмену РНКТ-II. В 8-и т. – Т. 5. Двухфазные течения. Дисперсные потоки и пористые среды. – М.: Изд-во. МЭИ, 1998. – С. 121-124.

Поступила в редакцию 1.06.2007

Рецензент: д-р техн. наук, проф. А.В. Бастеев, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.