УДК 621.577

Р.Н. РАДЧЕНКО

Национальный университет кораблестроения им. адмирала Макарова, Украина

ОБОСНОВАНИЕ ВЫБОРА РАЦИОНАЛЬНЫХ РЕШЕНИЙ ВОЗДУХООХЛАДИТЕЛЬНЫХ УЗЛОВ ТЕПЛОИСПОЛЬЗУЮЩИХ УСТАНОВОК КОНДИЦИОНИРОВАНИЯ СУДОВЫХ ДВС

Обоснованы схемные решения воздухоохладительных узлов установок кондиционирования, использующих теплоту уходящих газов и наддувочного воздуха судовых дизелей для охлаждения их циклового воздуха.

утилизация теплоты, уходящие газы, наддувочный воздух, установка кондиционирование воздуха, испаритель-воздухоохладитель, массовая скорость хладагента

1. Анализ проблемы и постановка цели исследования

Условия эксплуатации судовых ДВС характеризуются повышенными температурами воздуха на входе. Понизить ее температуру и за счет этого повысить мощность и КПД ДВС можно с помощью теплоиспользующих установок кондиционирования воздуха (ТУКВ), утилизирующих теплоту вторичных энергоресурсов (ВЭР) двигателей, в частности, уходящих газов и наддувочного воздуха.

Эффективность ТУКВ во многом зависит от работы их испарителей-воздухоохладителей (И-ВО), обеспечивающих снижение температуры наружного воздуха на входе ДВС. Чем выше плотность теплового потока q в И-ВО, тем более компактными будут И-ВО, а при неизменных их габаритах – меньше температурные напоры θ в них между охлаждаемым воздухом и кипящим хладагентом, что позволяет охладить воздух на входе ДВС до более низкой температуры и за счет этого повысить эффективность двигателей (КПД и мощность). Массовую скорость ρw кипящего хладагента, которая обеспечивает максимальную плотность теплового потока q_{max} , принято считать оптимальной (ρw)_{орt}.

Целью выполненного исследования является обоснование выбора схемных решений воздухоохладительного узла ТУКВ с учетом зависимости показателей эффективности ТУКВ от массовой скорости *рw* хладагента в И-ВО).

2. Анализ результатов исследования и разработка схемных решений ТУКВ

Эффективность применения ТУКВ в ДВС оценивалась по приращению КПД двигателей. При этом расчеты показателей работы ТУКВ (теплового коэффициента, удельной холодо-производительности) и приращения КПД ДВС выполнялись с учетом их зависимости от массовой скорости хладагента в И-ВО.

В качестве примера выбрана ТУКВ струйного (эжекторного) типа [1]. Такой выбор обоснован тем, что эжекторные ТУКВ отличаются конструктивной простотой и надежностью в эксплуатации, благодаря чему их интеграция в дизельные установки не приведет к заметному усложнению последних. Схема эжекторной ТУКВ, использующей теплоту уходящих газов и наддувочного воздуха ДВС для охлаждения наружного воздуха на входе двигателя, представлена на рис. 1. Эжекторная ТУКВ состоит из паросилового и холодильного контуров. Паросиловой контур служит для получения паров хладагента высокого давления, энергия которых используется в эжекторе для поджатия паров хладагента низкого давления, всасываемых из И-ВО холодильного контура, до давления в конденсаторе.

Рис. 1. Схема эжекторной ТУКВ: Г – генератор паров хладагента; Э – эжектор; Кн – конденсатор; Н – насос; ДК – дроссельный клапан; НВ – наружный воздух; И-ВО – испаритель-воздухоохладитель; К – компрессор; УТ – утилизационная турбина

Жидкий хладагент после конденсатора делится на два потока: первый – подается насосом в генератор, где он нагревается и испаряется при высоком давлении за счет теплоты, отводимой от наддувочного воздуха и уходящих газов ДВС; а второй – дросселируется в дроссельном клапане и направляется в И-ВО, где испаряется при низком давлении и соответственно температуре, отводя теплоту от наружного воздуха на входе ДВС.

Энергетическая эффективность эжекторных ТУКВ характеризуется тепловым коэффициентом $\zeta = Q_0 / Q_r$, представляющим собой отношение холодопроизводительности Q_0 (количества теплоты, отведенной от циклового воздуха ДВС) к количеству теплоты Q_r , подведенной в генераторе к кипящему хладагенту от уходящих газов.

На рис. 2 и 3 приведены зависимости теплового коэффициента ТУКВ ζ от массовой скорости хладагента в И-ВО при температурах кипения в И-ВО $t_0 =$ 0 и 10 °C, генераторе $t_r = 80$; 100 и 120 °C и конденсации $t_k = 35$ и 45 °C. В качестве хладагента применен озонобезопасный хладон R142B.

Как видно из рис. 2 и 3, зависимости теплового коэффициента ТУКВ от массовой скорости НРТ в И-ВО $\zeta = f(\rho w)$ имеют явно выраженные экстремумы, характер и положение которых относительно ρw с изменением температуры конденсации t_{κ} и кипения в И-ВО t_0 и генераторе t_{Γ} практически не меняются, но сами значения максимумов ζ_{max} возрастают с увеличением t_0 и t_{Γ} и уменьшением t_{κ} .

Рис. 2. Тепловые коэффициенты ζ в зависимости от массовой скорости ρw R142B в И-ВО при температурах кипения в И-ВО $t_0 = 0$ °C, генераторе $t_r = 80$, 100 и 120 °C и конденсации t_{κ} : a – $t_{\kappa} = 35$ °C; б – $t_{\kappa} = 45$ °C

Рис. 3. Тепловые коэффициенты ζ в зависимости от массовой скорости ρw R142B в И-ВО при температурах кипения в И-ВО $t_0 = 10$ °C, генераторе $t_r = 80...120$ °C и конденсации t_{κ} : a $- t_{\kappa} = 35$ °C; б $- t_{\kappa} = 45$ °C

На рис. 4 представлены зависимости удельной холодопроизводительности q_0 (приходящейся на единичный расход воздуха, охлаждаемого в И-ВО) от массовой скорости ρw хладагента R142B в И-ВО. При этом температура уходящих газов на входе генератора принималась равной $t_{r1} = 250$ °C, на выходе испарительной секции генератора $t_{r.и2} = t_r + 20$ °C. Температура газов на выходе из экономайзерной секции генератора устанавливалась в соответствии с соотношением удельных тепловых нагрузок на ис-

парительную секцию (удельной теплоты фазового перехода хладагента) и экономайзерную секцию (удельной теплоты, необходимой для нагрева жидкого хладагента от температуры $t_{\rm k}$ до $t_{\rm r}$), определяемым термодинамическим холодильным циклом эжекторной ТУКВ. Температура воздуха на входе в И-ВО принималась $t_{\rm B1} = 45$ °C, т.е. равной температуре воздуха в машинном отделении, а минимальная температура $t_{\rm B2}$ воздуха на выходе из И-ВО – на 10 °C выше температуры кипения t_0 .

Рис. 4. Удельная холодопроизводительность q_0 в зависимости от массовой скорости ρw R142B в И-ВО: a – $t_0 = 0$ °C; $t_{\kappa} = 45$ °C; $\delta - t_0 = 10$ °C; $t_{\kappa} = 35$ °C

В случае, когда холодопроизводительность ТУКВ превышала ее величину, требуемую для предварительного охлаждения наружного воздуха от *t*_{в1} до *t*_{в2}, избыток холодопроизводительности использовался для глубокого промежуточного охлаждения наддувочного воздуха.

Как видно из рис. 4, зависимости $q_0 = f(\rho w)$ подобно $\zeta = f(\rho w)$ имеют явно выраженные экстремумы, характер и положение которых относительно ρw с изменением t_{κ} , t_0 и t_{Γ} остаются практически постоянными, но сами значения максимумов $q_{0\text{max}}$, как и ζ_{max} , меняются, и значительно. Так, при $t_0 = 10$ °C и $t_{\kappa} = 35$ °C величины $q_{0\text{max}}$ примерно в два раза выше, чем при $t_0 = 0$ °C и $t_{\kappa} = 45$ °C. Это обусловлено возрастанием ζ с увеличением t_0 и уменьшением t_{κ} (см. рис. 2).

Уменьшение температуры воздуха $\Delta t_{\rm B}$ в И-ВО, соответствующее q_0 , в зависимости от массовой скорости ρw R142B в И-ВО приведено на рис. 5.

Рис. 5. Уменьшение температуры воздуха $\Delta t_{\rm B}$ в И-ВО ТУКВ в зависимости от массовой скорости ρw хладагента R142B в И-ВО: $a - t_0 = 0$ °C; $t_{\rm K} = 45$ °C; $\delta - t_0 = 10$ °C; $t_{\rm K} = 35$ °C

Как видно, при $t_0 = 0$ °С и $t_{\kappa} = 45$ °С (рис. 4, *a*) уменьшение температуры воздуха в И-ВО составляет $\Delta t_{\text{B.max}} = 30...50$ °С, чего достаточно, чтобы охладить наружный воздух на входе ДВС до минимально возможной температуры: от $t_{\text{B1}} = 45$ °С (воздух в машинном отделении) до $t_{\text{B2}} = 20$ °С (при разности температур между воздухом на выходе из И-ВО и кипящим хладагентом $\Delta t_{\text{B2-a}} = t_{\text{B2}} - t_0 = 10$ °С). При $t_0 = 10$ °С и $t_{\kappa} = 35$ °С величина $\Delta t_{\text{B.max}} = 90...130$ °С, т.е. в 4–5 раз превышает требуемую глубину охлаждения наружного воздуха на входе ДВС. Избыточную холодопроизводительность ТУКВ можно реализовать двумя путями: охлаждая наружный воздух на входе ДВС при более низкой температуре кипе-

ния t_0 ($t_0 = 0$ °C и ниже) соответственно до меньшей температуры t_{B2} или же путем глубокого промежуточного охлаждения наддувочного воздуха ДВС, что обеспечит дополнительное повышение эффективности ДВС.

О количестве воздуха, который можно дополнительно охладить на ту же величину $\Delta t_{\rm HB} = 20...30$ °C, что и наружный воздух на входе ДВС (благодаря избыточной холодопроизводительности ТУКВ) можно судить по величинам относительного расхода воздуха $\overline{G}_{\rm B} = G_{\rm HB} / G_{\rm B}$, где $G_{\rm HB}$ – расход наружного воздуха на входе ДВС, $G_{\rm B}$ – расход воздуха, который можно охладить в ТУКВ на величину $\Delta t_{\rm HB} = 20...30$ °C, приведенным на рис. 6.

Рис. 6. Относительный расход \overline{G}_{B} воздуха, охлаждаемого в И-ВО, в зависимости от массовой скорости р*w* хладагента R142B в И-ВО : $a - t_{\kappa} = 35 \text{ °C}; \ 6 - t_{\kappa} = 45 \text{ °C}; - t_{0} = 10 \text{ °C}; - - - t_{0} = 0 \text{ °C}$

Как видно, при $t_0 = 0$ °С и $t_{\kappa} = 35$ °С в И-ВО ТУКВ на величину $\Delta t_{\rm HB} = 20...30$ °С можно охладить количество воздуха, в 1,5...2,0 раза больше, чем его расход на входе ДВС, т.е. охладить дополнительно к наружному воздуху еще и наддувочный воздух на величину, равную $(0,5...1,0)\Delta t_{\text{HB}}$. В этом случае И-ВО выполняют в виде двух ступеней: одну устанавливают перед наддувочным компрессором ДВС, а другую - после него (рис. 7). При температуре уходящих газов на входе генератора $t_{r1} = 250$ °C и выше для достижения максимальной холодопроизводительности экономайзерную секцию генератора следует выносить из газохода на линию наддувочного воздуха (рис. 7) и нагревать в ней жидкий хладагент от t_к до t_г. При этом обеспечивается максимальная глубина утилизации теплоты уходящих газов без возникновения сернистой коррозии, поскольку температура газов после испарительной секции $t_{\Gamma, \mu 2}$ всегда выше температуры t_{Γ} кипения в ней хладагента.

Если принимать, что каждые десять градусов уменьшения температуры воздуха обеспечивают повышение КПД ДВС на 0,5 % [2], то суммарное приращение КПД за счет охлаждения наружного и наддувочного воздуха может быть довольно заметным: Δη = 1,5...2,5 % при *t*_к = 45 °C и 3...4 % при *t*_к = 35 °C (рис. 8).

генератора; Э – эжектор; Кн – конденсатор;

Н – насос; ДК – дроссельный клапан; НВ – наружный воздух; И1, И2– испарители первой и второй ступеней; К1, К2 – компрессоры первой и второй ступеней; УТ – утилизационная турбина

Такое значительное приращение КПД ДВС возможно, во-первых, при одновременном использовании в ТУКВ теплоты уходящих газов с повышенной температурой на входе в генератор ($t_{r1} = 250$ °C и выше) и наддувочного воздуха, а во-вторых, при высокой тепловой эффективности И-ВО и конденсатора, обеспечивающей минимальные температурные напоры в них, а следовательно, и минимальные энергетические потери в холодильном цикле ТУКВ.

Рис. 8. Приращение КПД ДВС $\Delta \eta$ в зависимости от массовой скорости ρw хладагента R142B в И-ВО при разных температурах кипения в И-ВО t_0 ; генераторе t_r и конденсации t_{κ} : $a - t_0 = 0$ °C; $t_{\kappa} = 45$ °C; $\delta - t_0 = 10$ °C; $t_{\kappa} = 35$ °C

Выводы

 Применение ТУКВ, использующих теплоту уходящих газов и наддувочного воздуха ДВС для охлаждения наружного воздуха на входе и глубокого промежуточного охлаждения воздуха обеспечивает повышение КПД ДВС на 2...4%.

2. Предложено схемное решение ТУКВ с И-ВО в виде двух ступеней и расположением одной – на входе ДВС, а другой – на линии наддувочного воздуха. При этом температура уходящих газов ДВС должна быть не ниже 250 °С, а генератор ТУКВ – выполнен также из двух секций с установкой испарительной – в газоходе ДВС, а экономайзерной – на линии наддувочного воздуха.

Литература

 Захаров Ю.В. Судовые установки кондиционирования воздуха и холодильные машины. – С.-Пб.: Судостроение, 1994. – 504 с.

 Колпакчи Э.М., Кохановский А.И. Особенности технической эксплуатации судовой энергетической установки пассажирского судна, работающего в условиях стесненного фарватера // Судовые энергетические установки: Научн.-техн. сб. – Одесса: ОНМА. – 2004. – Вып. 11. – С. 23-33.

Поступила в редакцию 28.05.2007

Рецензент: д-р техн. наук, проф. В.А. Голиков, Одесская национальная морская академия, Одесса.