УДК 621.45.01

В.Ю. БЕРЕЖНОЙ¹, О.Д. ДЕГТЯРЁВ², М.М. КУДИН², О.П. САВЕЛЬЕВ²

¹ГП НПКГ «Зоря»-«Машроект», Украина,

²Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Украина

ПРИМЕНЕНИЕ СОВРЕМЕННЫХ МЕТОДОВ АНАЛИЗА НЕСТАЦИОНАРНЫХ СИГНАЛОВ ДЛЯ ИССЛЕДОВАНИЯ ВИБРАЦИИ ГТД НА ПЕРЕХОДНЫХ РЕЖИМАХ

Использование комбинации непрерывного вейвлет-преобразования, преобразования Габора и кепстрального анализа сигналов датчиков давления и акселерометров упростило интерпретацию результатов измерений на переходных режимах ГТД. Комбинация преобразования Габора и вейвлет-преобразования позволяет существенно упростить анализ нестационарных сигналов, применение кепстрального анализа дает возможность отсеять дополнительную порцию ненужной информации. Кепстр в современной интерпретации понимается как обратное преобразование Фурье логарифмического спектра.

газотурбинный двигатель, виброакустическая диагностика, непрерывное вейвлет-преобразование, преобразование Габора, кепстральный анализ

Введение

Основным «поставщиком» аэродинамических источников вибрации, существенно влияющих также и на работу камеры сгорания, является компрессор. При запуске двигателя клапаны перепуска и направляющие аппараты управляются по программе, предотвращая срыв потока и помпаж, при этом сами могут их вызвать [1]. Для анализа работы этих устройств на переходных режимах применяются виброакустические методы, использующие сигналы малоинерционных датчиков давления и акселерометров. Спектры этих сигналов имеют сложный вид, в них присутствуют гармонические составляющие, эхо, широкополосные и узкополосные шумы. Во время запуска двигателя эти составляющие динамически изменяются, возникают и исчезают. Усложняет анализ и то, что несколько роторов двигателя разгоняются каждый со своей скоростью.

Формулирование проблемы

Применение псевдостационарного спектрального анализа (на коротких участках с использованием авторегрессионых методов) [2] в данном случае затруднено, так как требует анализа множества спектров, в которых присутствует большое количество перемещающихся друг относительно друга гармонических составляющих и узкополосных шумов.

Задача исследования состояла в выборе математического инструмента анализа, который позволил бы просто и наглядно представлять информацию, содержащуюся в сигналах датчиков на переходных режимах работы двигателя.

Решение проблемы

Для анализа нестационарных сигналов было выбрано преобразование Габора [3]. Спектрограмма тестового «chirp»-сигнала, частота которого увеличивается линейно, показана на рис.1.

Рис. 1. Результат преобразования Габора тестового сигнала

© В.Ю. Бережной, О.Д. Дегтярёв, М.М. Кудин, О.П. Савельев АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2008, № 10 (57) При разгоне двигателя гармоники оборотных частот роторов и частот прохождения рабочих лопаток на спектрограмме выглядят как ряд расходящихся непрерывных кривых (рис.2, а), что существенно упрощает анализ. На рисунке изображена спектрограмма малоинерционного (до 5 кГц) пьезоэлектрического акселерометра, установленного в области переходного канала между каскадами компрессора двигателя ГТД 10000 (Николаев) [1]. Частота дискретизации 2048 Гц. На рисунке частота изменяется в пределах Найквиста. Динамика разгона роторов двигателя представлена на рис.3.

Рис. 2. Спектрограмма сигнала пьезокерамического акселерометра при разгоне двигателя

Отдельные спектры имели бы сложный вид, а на спектрограмме видны гармоники оборотных частот роторов, гармоники сетевой наводки 50Гц (рис.2,b) и несколько спектральных составляющих (рис.2,c) поведение которых было бы затруднительно проанализировать с помощью отдельных спектров.

Однако преобразование Габора не дает информации о фрактальной структуре изучаемых явлений в процессе их возникновения и развития. Для этого было применено непрерывное вейвлетпреобразование сигнала [3]

Результаты непрерывного вейвлет-преобразования тестового сигнала представлены на рис. 4.

Рис.4. Непрерывное вейвлет-преобразование тестового сигнала. Вейвлет «мексиканская шляпа»

Здесь видна и структура колебаний и уменьшение их масштаба со временем. На рис. 5 показано, что результаты зависят от соответствия типа вейвлета форме сигнала. Применение прямоугольного вейвллета Хаара к синусоидальному тестовому сигналу сразу усложнило анализ результатов.

Рис. 5. Непрерывное вейвлет-преобразование тестового сигнала. Вейвлет Хаара

На рис. 6 приведена спектрограмма датчика давления (полоса 1.2 кГц), установленного на кор-

пусе камеры сгорания двигателя ГТД 10000. Частота дискретизации 2048 Гц.

Рис. 6. Спектрограмма сигнала датчика давления

Открытие клапанов перепуска воздуха приводило к возникновению пульсационного горения. На спектрограмме видны гармоники этих пульсаций (1). При закрытии клапанов пульсации исчезают, однако происходит некоторый переходный процесс с быстро растущей частотой (2) а затем остается лишь узкополосный шум (3).

Результаты вейвлет-преобразования для этих участков представлены на рис. 7 – 9.

На рис. 7 отчетливо видна структура пульсаций, занимающих диапазон масштабов.

Масштаб

Время Рис. 7. Вейвлет-преобразование сигнала давления

На переходном участке эти пульсации распадаются на мелко масштабные и крупномасштабные и носят более нерегулярный характер (рис. 8).

На рис. 9 и 10 представлены вейвлет-преобразования и спектрограммы сигналов пьезокерамического микрофона, расположенного вблизи компрессора двигателя АИ-8 и СВЧ-тахометра, антенна которого была направлена на его рабочие лопатки во время запуска и остановки. Частота дискретизации составляла 44100 Гц. На рисунках частота изменяется в пределах частоты Найквиста. Как и на предыдущих спектрограммах отчетливо видны составляющие спектров, вызванные различными событиями: гармоники, связанные с оборотной частотой и частотой прохождения лопаток, широкополосные электромагнитные импульсы, возникающие при включении силовых коммутаторов, низкочастотный шум камеры сгорания.

Несмотря на то, что комбинация преобразования Габора и вейвлет-преобразования позволяет существенно упростить анализ нестационарных

Пьезокерамический микрофон

Рис.10. Спектрограммы сигналов датчиков при запуске и остановке двигателя АИ-8

Рис. 11. Кепстры мощности сигнала давления

Из рисунка видно, что сигнал, особенно когда в нем присутстуют мощные пульсации (1) содержит свое эхо (гармоники при больших квефренциях). Одно из назначений этого вида анализа — устранение эха, тем самым из сигнала удаляется лишняя информация. Для анализа удобно использовать и кратковременный кепстр, построенный по аналогии с преобразованием Габора.

Кепстр построен с десятикратным прореживанием данных на участке затухания пульсаций давления.

Заключение

Как показали проведенные исследования, наиболее удобным математическим инструментом для анализа сигналов малоинерционных датчиков на переходных режимах ГТД является комбинация преобразования Габора, непрерывного вейвлетанализа и кратковременного кепстрального анализа. Ее применение позволяет существенно упростить анализ результатов. Для программной реализации такой комбинации была использована открытая программа ОСТАVE.

Литература

 Определение источника повышенных пульсаций давления на входе в камеру сгорания газотурбинного двигателя / А.А.Филоненко, В.Ю.Бережной, О.Д. Дегтярев, М.М. Кудин // Авиационнокосмическая техника и технология. – 2006. – № 7(33). – С. 98-101.

 Марпл-мл. С.Л. Цифровой спектральный анализ и его приложения. – М.: Мир, 1990. – 584 с.

 Штарк Г.Г. Применение вейвлетов для ЦОС. – М.: ТЕХНОСФЕРА, 007. – 192 с.

Рандалл Р.Б. Частотный анализ. – М.: АО
К. Ларсен и сын, ДК2600 Глострун, Дания. – 389 с.

Поступила в редакцию 25.05.2008

Рецензент: д-р техн. наук, проф., В.П. Герасименко, Национальный аэрокосмический университет им. Н. Е. Жуковского "ХАИ", Харьков.