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Gas turbine fault isolation or identification generally uses a model-based classification of gas path faults. This 
classification is not too exact because of model errors. The present paper looks at the possibility to create a fault 
class on the basis of gas turbine real data containing cycles of a compressor fouling and washing. The concerned 
data-driven fouling class formation is realized in the space of deviations of measured gas path quantities. Ana-
lyzing deviation plots for different fouling cycles, we have confirmed identifiability of the fouling. In order to 
draw sound conclusions, the analysis was conducted for two gas turbines of different application. 
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Introduction 

 

In modern gas turbine health monitoring systems, 

the algorithms of fault identification based on treatment 

of gas path measured quantities (pressures, tempera-

tures, rotation speeds, fuel consumption, etc.) are con-

sidered as principal and sufficiently complex techniques 

[see, for example, 1]. These algorithms are capable to 

identify (isolate) such gas turbine performance deterio-

ration (degradation) mechanisms as fouling, tip rubs, 

seal wear, and erosion in different gas path components 

e.g. compressors, turbines, and a combustor. The degra-

dation mechanisms (let’s call them faults) evolve gradu-

ally over the long time of operation and induce increas-

ing deviations of measured gas path variables. Above 

these gas path faults, measurement system malfunctions 

can also be isolated on the measured quantities [2]. 

To build a classification required for fault identifica-

tion, various gas path mathematical models are widely 

used [see 2 and 3] because of high cost of physical simu-

lation of the degradation mechanisms and infrequent fault 

displays. In this case, model errors are transmitted to the 

model-based classification and the problem arises to 

make the fault classification more exact using real data. 

Moreover, the necessary model can not sometimes be 

available and real data on fault displays can be unique 

information to build the classification.  

It is famous that the most common cause of station-

ary gas turbines’ deterioration is a compressor fouling. 

The impact of the fouling on gas turbine performance is 

well described [4,5] and data with fouling and washing 

cycles are widely used in order to verify diagnostic 

techniques [see, for example, 6 and 7].  

In the previous papers [8,9], we also involved main-

tenance data (field data) with influence of the fouling 

into diagnostic analysis. Deviations of measured quanti-

ties from their baseline (reference) values were em-

ployed as fouling indicators. The analysis objective was 

to ensure high quality of the deviations by detecting 

measurement errors, extracting them from analyzed 

data, and enhancement of a baseline function. Possible 

error sources were examined and some methods were 

proposed to compute this function. 

Proceeding with our work on field data with fouling 

and washing cycles, the present paper looks at the de-

viations as patterns to construct a data-driven class of 

the fouling. It is supposed to incorporate this class into 

the fault classification for gas turbine diagnostics in-

stead a model-based fouling class. The objective of the 

paper is to verify whether the fouling can be well identi-

fiable on the background of other degradation mecha-

nisms. To that end, we study its properties by means of 

analyzing numerous 2D and 3D deviation plots. In sec-

tion 2, the analysis is performed on field data of two 

industrial gas turbines and in section 3 field and model 

data are compared. 
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1. Fouling Analysis on Real Data 
 

1.1. Approach Applied 

A deviation calculation is an important preliminary 

operation before the stages of gas turbine monitoring, 

diagnostics, and prognostics. A relative deviation *Yδ  

of a measured gas path variable *Y  can be computed as  

* *
0 0( ) ( )Y Y Y U Y U
→ →⎛ ⎞

δ = −⎜ ⎟⎜ ⎟
⎝ ⎠

,                 (1) 

where 0 ( )Y U
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 is a baseline function, which corresponds to 

a healthy engine. The function’s arguments united in a 

vector U
→

 are atmospheric conditions and engine control 

variables known all together as operating conditions. The 

deviations *Yδ  computed for all monitored variables are 

mostly free of the influence of operating conditions and 

can be good engine performance deterioration indicators. 

A deviation value always contains random errors 

caused by measurement inaccuracy and baseline func-

tion uncertainty. Being great, these errors can mask the 

deterioration effect, in particular, the fouling influence. 

Hence, it is of great importance to reduce the errors and 

make the fouling more identifiable.   

Let’s denote the highest possible random error in de-

viation (1) by Yσ  and calculate a normalized deviation   
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As maximum error of each normalized deviations is 

equal to one, the fault class description will be uniform 

for all monitored variables. That is why in the present 

paper, the fouling class is described and analyzed in the 

diagnostic space of the deviations (2). The normalized 

deviations of all monitored variables computed for one 

measurement time section compose the vector that is a 

point in the diagnostic space and a pattern to be recog-

nized. Every fault class including the fouling class is 

presented by a set of patterns.  

During the computing the deviations, it is a main 

problem to get an adequate baseline function. Polyno-

mials and artificial neural networks are usually applied 

to that end and a learning set of real data is used to iden-

tify them. We showed in previous works [8,9] that the 

second order full polynomials adequately describe be-

haviour of a healthy engine. We also revealed that the 

learning set generated by a gas turbine thermodynamic 

model permits to get a good baseline function. That is 

why the second order polynomials and the thermody-

namic model are employed in the present paper. In 

addition to generating the learning set, this model is 

applied for simulating the compressor fouling.  

The model has the following structure  

( , )Y F U
→ → →
= Θ                              (3) 

and relates the gas path variables with the operating 

conditions and fault parameters 
→
Θ . These parameters 

are used to displace performance maps of engine com-

ponents and simulate different faults in this way.  

In the present paper, fouling analysis on real data will 

be carried out in the space of the deviations by plotting 

data with different fouling cycles and by the visual ex-

amination of suitability of the plotted data for construc-

tion of a representative fouling class. In particular, the 

properties will be verified of (a) deviation sensibility to 

the fouling, (b) low deviation errors, (c) uniform pattern 

distribution in the fouling class area, and (d) repeatability 

of the class area for various fouling cycles. 

Two following subsections deal with the data analy-

sis for two free turbine power plants of different appli-

cation. The first of them called in this paper as Engine 1 

drives a centrifugal compressor in natural gas pipelines, 

while the second called Engine 2 is a driver of an elec-

trical generator. During prolonged periods of time, field 

data of these engines were registered in special diagnos-

tic databases within an hour interval. The data cover 

numerous cycles of the fouling and washing. Our pre-

liminary analysis shows that engines’ performances are 

recovered after the washings. That is why the fouling 

can be considered as a unique degradation mechanism 

affecting the engines during the registration periods.  



Информационные технологии 194 

1.2. Engine 1 Data Analysis 
 
For Engine 1, a total registration period embraces 

2605 hours of operation and consists of two intervals of 

the fouling with the washing between them. The wash-

ing takes place after the 1010th hour of operation.  

As described before, the chosen baseline function 

presents the second order full polynomial. To introduce 

engine operating conditions into the function, four ar-

guments have been selected for Engine 1: fuel consump-

tion, free turbine (power turbine) rotation speed, inlet 

temperature, and atmospheric pressure. These argu-

ments almost completely determine an engine operating 

point and ensure the smallest deviation errors. To calcu-

late polynomial’s coefficients, the data generated by the 

thermodynamic model of type (3) was employed.  

On the basis of the calculated baseline functions, de-

viations (1) have been computed for all monitored gas 

path variables. As a result of analyzing and comparing 

deviation plots, four most informative deviations were 

selected for further analysis and their highest possible 

errors were estimated. Table 1 specifies the deviations 

and their error parameters.  

In Fig.1 , time plots of the selected deviations are 

presented. As can be seen for all deviations, an influ-

ence of the fouling and washing is clearly visible in the 

background of random fluctuations. However, gas tur-

bine faults are usually identified and a fault classifica-

tion is constructed in the multidimensional space of 

normalized deviations (2). For this reason, we also plot-

ted 3D and 2D diagrams of normalized deviations (pat-

terns) without a time variable.  

Table 1 
Deviations analyzed for Engine 1 

Deviation
notation Name of monitored variable 

Error  
Yσ  

dTt High pressure turbine temperature 0,0050 
dTpt Power turbine temperature 0,0060 
dPt High pressure turbine pressure 0,0055 
dPc Compressor pressure 0,0090 

Note: The name of variable references to  an outlet section  
of the corresponding engine component. 

 
Fig. 2 shows the 3D diagram for the first three vari-

ables of Table 1. Patterns of the first and the second foul-

ing intervals are marked here and below as F1 and F2 

correspondingly.  

As one 3D diagram does not give a full picture of a 

pattern distribution, three projections are also given in 

Fig. 3. It can be seen in the both figures that the fouling 

patterns create a compact and elongated areas. This 

means that the chosen deviations are sensible to the foul-

ing and the deviation errors are relatively small. In other 

words, the signal-to-noise ratio is relatively great. It can 

additionally be stated that the pattern areas of two fouling 

intervals are pulled out in the same direction, namely the 

fouling influence on the monitored variables does not 

change with the gas turbine operation time. 

 
Fig. 1. Time plots of Engine 1 deviations 
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Fig. 2. 3D diagram of Engine 1 normalized deviations 

 

 
Fig. 3. 2D diagrams of Engine 1 normalized deviations 

Engine 2 data are also attracted in order to general-

ize the analysis and conclusions. For this engine, the 

fouling analysis is conducted in the next subsection in 

the same manner as for Engine 1.  

 
1.3. Engine 2 Data Analysis 

 
A total period of Engine 2 field data registration in-

cludes 4914 hours of operation and consists of five 

intervals of the fouling with the washings at the time 

points t = 803, 1916, 3098, and 4317.  

For the need of an electrical generator, a free tur-

bine rotation speed is maintained constant. Therefore, 

the baseline function has only three arguments. The 

chosen arguments that ensure the smallest deviation 

errors are free turbine power, atmospheric temperature, 

and inlet pressure.  

A thermodynamic model was not available for En-

gine 2 and a learning set for computing baseline func-

tion coefficients was composed from field data.  

Only three deviations were found to be informative 

for the considered engine. These deviations and their 

errors are specified in Table 2.  

Fig. 4 shows time plots of the selected deviations. 

One can see that an influence of the fouling and wash-

ing is as clearly visible as in the case of Engine 1.  
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Table 2 
Deviations analyzed for Engine 2 

Deviation 
notation Name of monitored variable Error Yσ

dTc Compressor temperature 0,0080 
dTt High pressure turbine temperature 0,0060 

dTpt Power turbine temperature 0,0110 
 

In Fig. 5 and 6, the 3D diagram and the projection 

graphs are presented. The fouling interval are marked 

here as F1, F2, …, F5. As can be seen in the figures, the 

distribution of Engine 2 patterns confirms the conclu-

sions drawn for Engine 1: the deviations are sensible to 

the fouling, the errors are relatively small, the patterns 

are uniformly distributed, and the fouling influence on 

the deviations is the same for all five intervals.  

Availability of the Engine 1 thermodynamic model al-

lows comparing real fouling displays with simulated data.  
 

 
Fig. 4. Time plots of Engine 2 deviations 

 
Fig. 5. 3D diagram of Engine 2 normalized deviations. 

.  
2. Comparison of Real and Simulated  

Engine 1 Fouling Data 
 
Software of the thermodynamic model permits to 

calculate a linear model  

Y H
→ →

δ = δΘ ,                              (4) 

which    connects   small   changes    of    fault    parameters  
→

δΘ  and gas path variables Y
→

δ  by an influence matrix 

H for fixed operating conditions. This linear model was 

used in the presented analysis on order to simplify the 

fouling simulation by calculating numerous patterns. 
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Fig. 6. 2D diagrams of Engine 1 normalized deviations 

To conserve fouling influence, the engine operating 

point for calculating the influence matrix was given by 

the fixed values of the same variables that were used in 

subsection 2.2 as the arguments of a baseline function. 

The fouling was simulated by gradual changes 1δΘ  and 

2δΘ  of the compressor fault parameters, compressor 

flow decrease and compressor efficiency decrease, from 

zero to their minimal values -0.030 and -0.015.  

The deviations Y
→

δ  induced by 1δΘ  and 2δΘ  were 

normalized then. In order to estimate the model accu-

racy, the normalized simulated deviations with and 

without errors were finally compared with real fouling 

data.  

With the purpose of better comparison, the model-

based deviations and data-driven ones are plotted to-

gether in common coordinates. Two 3D diagrams are 

presented in Fig. 7 and 8.  

In Fig.7, simulated deviations without errors are 

given in the plane that is parallel to the line of fouling 

severity increase while Fig.8 presents a transversal view 

where the simulated fouling is projected to a point. The 

simulated data are marked here and below by “M”-

letter.  

 

 
Fig. 7. 3D diagram of Engine 1 real and simulated fouling data (longitudinal view) 
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Fig. 8. 3D diagram of Engine 1 real and simulated fouling data (transversal view) 

 

In Fig. 9 and 10, 2D graphs are presented.  

 
Fig. 9. 2D diagrams of Engine 1 real fouling data  

and results of the deviations simulation  
without errors 

 

 
Fig. 10. 2D diagrams of Engine 1 real fouling data  

and results of the deviations simulation  
with errors 
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Figure 9 illustrates the case of simulated data with-

out errors and in Fig. 10 the data with errors are shown. 

It can generally be concluded from observing all plots 

that the thermodynamic model correctly reflects the 

fouling influence on monitored variables despite of a 

slight displacement of simulated data. 

 
Conclusions 

 
Thus, analyzing deviation plots based on real gas 

turbine data, we have demonstrated the possibility to 

create well recognizable class of compressor fouling. 

The deviations were found to be sensible to the fouling 

and a class area was compact and time stable. To better 

study the foiling class’ properties, the analysis was 

performed on field data of two different gas turbines.  

Comparing real and simulated data of one of the 

analyzed gas turbines, we have also shown that the 

thermodynamic model satisfactorily describes the foul-

ing influence on gas turbine performance.  

The above conclusions support the idea of a mixed 

fault classification that incorporates both model-based 

and data-driven fault classes. Such a classification will 

combine a profound common diagnosis with an elevated 

diagnostic accuracy for the data-driven classes.  

The present paper can be considered only as the first 

attempt to analyze data-driven fault classes. Visual 

qualitative analysis will be accompanied by quantitative 

estimations of class properties in our future works. 
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