УДК (681.3.06 ÷ 681.518.54):622.276

М.П. АНДРИИШИН¹, Е.А. ИГУМЕНЦЕВ², Е.А. ПРОКОПЕНКО²

¹УМГ «Киевтрансгаз», Киев, Украина

²Украинская инженерно-педагогическая академия, Харьков, Украина

ЛИНЕЙНЫЕ ТРЕНДЫ В ДИАГНОСТИКЕ БАЛАНСА ГАЗА

Рассматривается статистический подход к определению наличия коррекции и погрешности измерения расхода и распределения газа в магистральном газопроводе. В его основе лежит алгоритм выявления признаков коррекции путем статистического анализа временных рядов. Разработана математическая модель баланса газа в магистральном газопроводе. Приведены результаты диагностики для двух автономных систем газопроводов: «Киевской системы» и «Экспортного газопровода» Управления магистральных газопроводов (УМГ) «Киевтрансгаз», полученные на основе разработанной модели.

диагностика, измерение расхода газа, статистический анализ, изменение запаса газа, суточный расход газа, тренд, линейная регрессия

Общая постановка проблемы и ее связь с научно-практическими задачами

Газотранспортные предприятия допускают неточности из-за корректируемого измерения расхода газа, что не позволяет точно вычислить дисбаланс газа между приходом и распределением. Причиной этого являются погрешности измерений и утечки в отдельных нитках газопровода [1]. Выявление объема и мест коррекции измерений и утечек является нетривиальной задачей, для решения которой в настоящее время не разработано функциональных методик. Практика применения статистических методов в разных областях науки и народного хозяйства позволяет предположить, что их применение позволит решить вышеуказанные проблемы и в газовой промышленности.

Обзор публикаций и анализ нерешенных проблем. В настоящее время сбор и обработка статистической информации прихода и распределения газа по газотранспортной системе Украины ведется с помощью централизованной базы данных «АРМ диспетчера Трансгаза», основанной на измерениях современными расходомерами и вычислении физических характеристик газа [1]. Идея применения новых технологий (в частности статистических методов) для решения указанных проблем ранее высказывалась в научных публикациях [2, 3], но каких либо определенных результатов в данном направлении получено не было. Для выявления дисбалансов расхода газа в газопроводе в настоящее время применяются известные своей простотой методы [1], не позволяющие распознать коррекцию измерений.

Цель исследований – разработка универсального алгоритма выявления признаков коррекции измерения расхода газа, путем статистического анализа случайных временных рядов суточного измерения прихода и распределения.

Результаты исследований

Представим разность суточного расхода $D(t_i)$ между приходом $X(t_i)$ и распределением $Y(t_i)$ в газотранспортной систме за *i*-е сутки измерений в следующем виде:

$$D(t_i) = X(t_i) - Y(t_i); \quad (i = 1, 2, ..., n),$$
(1)

где n – количество суток измерений временного ряда прихода и распределения; t_i – время.

Каждые сутки (*t_i*) существует изменение запаса газа связанное с колебаниями давления и температуры

$$\alpha(t_i) = Z(t_i) - Z(t_{i-1}), \qquad (2)$$

где $Z(t_i)$, $Z(t_{i-1})$ – запас газа в газопроводе в *i*-е и (i-1) сутки измерений.

© М.П. Андриишин, Е.А. Игуменцев, Е.А. Прокопенко АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2008, № 10 (57) С учетом (2) дисбаланс $\beta(t_i)$ между приходом и распределением определим из соотношения: $\beta(t_i) = D(t_i) - \alpha(t_i), (i = 1, 2, ..., n)$. Из (2), следует, что среднее изменение запаса газа $\overline{\alpha}(t_i) = \frac{1}{n} \sum_{i=1}^{n} \alpha(t_i)$

равно: $\overline{\alpha} = [Z(t_n) - Z(t_1)]/n \approx 0.$

Среднее значение дисбаланса равно $\overline{D} = \overline{X} - \overline{Y}$,

где
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X(t_i)$$
 и $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y(t_i)$ — средние зна-

чения прихода и распределения.

При довольно длинных временных рядах $n \to \infty$ достаточно определить среднюю разность

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D(t_i) ,$$

где $\sigma_D^2 = \sigma_\beta^2 + \sigma_\alpha^2$, σ_β^2 и σ_α^2 – дисперсии разности, дисбаланса и изменения запаса газа.

Дисперсия σ_D^2 характеризует меру рассеивания

мгновенных значений $D(t_i)$ от среднего значения \overline{D} и используется для сравнения показателей отчетности в различных временных периодах. Точное определение дисперсии зависит от определения статистической природы временных рядов $X(t_i)$, $Y(t_i)$, $D(t_i)$.

Для статистического анализа временных рядов использованы данные УМГ «Киевтрансгаз», где эксплуатируются две автономные системы транспорта газа: «Киевская система» (КС) и «Экспортный газопровод» (ЭГ). Замеры $X(t_i)$ и $Y(t_i)$, (i = 1, 2, ..., n) проводились в течение пяти лет раздельно по ЭГ и КС ежесуточно (t_i). Относительный приход газа $X_o(t_i) = X(t_i)/\overline{X}$ по КС (рис. 1) содержит характерные участки тренда, связанные с сезонной неравномерностью поставок газа. Аналогичный вид имеет временной ряд распределения, а также временные ряды прихода и распределения по ЭГ.

Рис. 1. Временной ряд относительного прихода газа по КС

Исследуем периодические и случайные составляющие временных рядов путем их спектрального анализа. В общем случае для этого используется преобразование Фурье [4]. Т.к. в расчетах используются данные, представляющие собой дискретную конечную последовательность ежесуточных значений расхода газа, то применяется дискретная аппроксимация финитного быстрого преобразования Фурье [5]:

$$F\left[X(k/n)\right] = \sum_{i=1}^{n} X(t_i) \cdot \exp\left(-j2\pi k i/n\right)$$
$$(k = 1, 2, \dots, N), \qquad (3)$$

где *n* – объем временной выборки; *N* – число гармоник спектра.

Спектральный состав временных рядов КС и ЭГ

выборки n = 1024 одинаков и представляет собой сумму случайного и периодического сигналов с большим числом амплитуд отдельных *k*-х гармоник F = [X(k/n)]. На рис. 2 представлены относительные значения гармоник $F[X(k/n)]/\sigma_X$.

Максимальные значения амплитуд соответствуют периодам в один год (k = 3), шесть месяцев (k = 6), четыре месяца (k = 8) и один месяц (k = 34) (рис. 2).

Кроме того, в спектре присутствуют два пика на малых частотах k = 1 и k = 2 (первая и вторая гармоники), что обусловлено наличием линейного тренда отдельных участков временных рядов (рис. 1) [6]. Поэтому кроме компонент, описываемых периодическими функциями с сезонными (k = 3; k = 6) и технологическими периодами (k = 8; k = 34), а также

случайного процесса с широкополосными составляющими, в рядах наблюдается плавное долгосрочное движение, описываемое непрерывной функцией тренда, обусловленное требованиями поставки газа.

Кроме того, в спектре присутствуют два пика на малых частотах k = 1 и k = 2 (первая и вторая гармоники), что обусловлено наличием линейного тренда отдельных участков временных рядов (рис. 1) [6]. Поэтому кроме компонент, описываемых периодическими функциями с сезонными (k = 3; k = 6) и технологическими периодами (k = 8; k = 34), а также случайного процесса с широкополосными составляющими, в рядах наблюдается плавное долгосроч-

ное движение, описываемое непрерывной функцией тренда, обусловленное требованиями поставки газа.

Оценку линейного тренда отдельных участков ряда проведем с помощью простой линейной регрессии [7]. Сложный спектральный состав временных рядов обладает своим специфическим законом плотности вероятности. Гистограммы $X(t_i)$ и $Y(t_i)$ КС показаны на рис. З. Здесь N_{Xi} , N_{Yi} — число значений X(t_i) и Y(t_i), попадающих в *i*-й фиксированный интервал наблюдений $\Delta_{i+1} = (i + 1)\Delta - i\Delta$; (*i*= 1, 2, ..., *r*), где $\Delta = (X_{max} - X_{min})/r$; *r* — число интервалов; i = 0 соответствует X_{min} ; i = r соответствует X_{max} . Плотность вероятности рядов $X(t_i)$, $Y(t_i)$ (huc. 3) по виду напоминает закон Райса, [4]. Отличие от закона Райса состоит в том, что правый и левый максимумы плотности вероятности $p[X(t_i)]$ и $p[Y(t_i)]$ несимметричны относительно среднего (huc. 3). Таким образом, гистограммы подтверждают, что исследуемые ряды $X(t_i)$ и $Y(t_i)$ КС и ЭГ представляют сумму периодического и случайного рядов.

Рис. 3. Гистограммы рядов прихода и распределения газа КС

Данные статистической отчетности охватывают промежутки времени меньшие или соизмеримые с обнаруженной периодичностью $X(t_i)$, $Y(t_i)$, $D(t_i)$ в один год, поэтому необходимо зафиксировать постоянные периоды отчетности в весенне-летние и осенне-зимние периоды.

Применяемые при анализе спектральные соотношения, связанные с быстрым преобразованием Фурье, требуют выбирать длину выборки из соотношения $n = 2^m$. Здесь можно предложить в зимний и летний периоды выборку длиной n = 128; m = 7 (четыре месяца), а в весенний и осенний периоды n = 64; m = 6(два месяца), что в сумме составляет период приблизительно один год: T = 2.128 + + 2.64 = 384. Минимально допустимая выборка анализа равна n = 50 [6], а в спектре присутствует соответствующий технологический период n = 128; k = 8, что позволяет использовать предложенные рекомендации.

Кроме того, установлено, что средние и дисперсии рядов с n = 128 и n = 64 являются также периодическими функциями с периодом в один год, возрастают в зимний и убывают в летний период. Таким образом, выборки длиной n = 128 обладают зимой возрастающим, а летом – убывающим трендом, что обусловлено возрастанием потребления газа в зимний и убыванием в летний периоды. Спектральный анализ временных рядов выборки n = 128 и n = 64 показывает, что кроме дискретных периодических составляющих и широкополосного шума спектр содержит два пика большой интенсивности на малых частотах, аналогично рис. 2, обусловленных линейным трендом.

Для выявления тренда проверялась случайность временных рядов на участках n = 1024, n = 128, n = 64 с помощью метода поворотных точек и метода разностей [7]. Это позволило обнаружить наличие тренда в рядах $X(t_i)$ и $Y(t_i)$ КС и ЭГ при n = 128 и n = 64. Применение метода Фостера–Стьюдента [7] позволило принять гипотезу о наличии тренда в дисперсии.

Оценка влияния трендов на $X(t_i)$ и $Y(t_i)$ проводилась с помощью простой линейной регрессии [7]:

$$X(t_i) = c_X + b_X t_i + \varepsilon_X(t_i);$$

$$Y(t_i) = c_Y + b_Y t_i + \varepsilon_Y(t_i),$$
(4)

где $\epsilon_X(t_i)$, $\epsilon_Y(t_i)$ – случайные составляющие рядов

(случайные помехи).

Параметры регрессии c_X , c_Y , b_X , b_Y получены [6]:

$$b_{X} = \frac{n \sum_{i=1}^{n} t_{i} X(t_{i}) - \sum_{i=1}^{n} t_{i} \sum_{i=1}^{n} X(t_{i})}{n \sum_{i=1}^{n} t_{i}^{2} - \sum_{i=1}^{n} t_{i}^{2} \sum_{i=1}^{n} t_{i}^{2}};$$

$$c_{X} = \frac{\sum_{i=1}^{n} X(t_{i}) \sum_{i=1}^{n} X(t_{i})^{2} - \sum_{i=1}^{n} t_{i} \sum_{i=1}^{n} t_{i} X(t_{i})}{n \sum_{i=1}^{n} t_{i}^{2} - \sum_{i=1}^{n} t_{i}^{2} \sum_{i=1}^{n} t_{i}^{2}}.$$
(5)

Определив b_{X} , c_{X} , вычислим по выражению (4) значения регрессии для n = 128 и проследим за изменением параметров относительной регрессии $b^{o}{}_{Xi} = b_{Xi}/\overline{X}$ и $b^{o}{}_{Yi} = b_{Yi}/\overline{Y}$ (i = 1, 2, ..., 1024), характеризующих линейный тренд за весь период измерений (рис. 4).

Рис. 4. Зависимость коэффициентов трендов b_{Xi}^{o} , b_{Yi}^{o} КС от времени

Из рис. 4 следует, что коэффициенты трендов (параметры регрессий) $b^{o}_{\chi_{i}}$ и $b^{o}_{\chi_{i}}$ являются периодическими функциями времени с периодом в один год, возрастают в зимний и убывают в летний периоды.

В качестве показателя интенсивности связи переменных $X(t_i)$ и $Y(t_i)$ с трендом используем коэффициент детерминации [7]:

$$B_{X} = \frac{\sum_{i=1}^{n} \left[\left(X(t_{i}) - \overline{X} \right) (t_{i} - \overline{t}) \right]^{2}}{\sum_{i=1}^{n} \left(X(t_{i}) - \overline{X} \right)^{2} \sum_{i=1}^{n} (t_{i} - \overline{t})^{2}}.$$
 (6)

Коэффициент детерминации (6) показывает, какая часть полного рассеивания значений $X(t_i)$ обусловлена трендом. Чем большую долю в общей дисперсии σ^2_X составляет дисперсия регрессии (тренда) σ^2_{Xp} , тем лучше выбранная функция регрессии соответствует эмпирическим данным. Остаточная дисперсия σ^2_{Xo} определяется $\varepsilon_X(t_i)$ и характеризует неопределенность или неточность регрессии. Объясняемая регрессией и остаточная дисперсии вычисляются с помощью коэффициента детерминации из следующего соотношения [7]:

$$\sigma_{Xp}^{2} = B_{X}\sigma_{X}^{2};$$

$$\sigma_{Xo}^{2} = (1 - B_{X})\sigma_{X}^{2}.$$
(7)

В табл. 1 представлены относительные значения коэффициентов регрессии $b_0 = b/\overline{X}$; $c_0 = c/\overline{X}$ и детерминации *B*, а также коэффициенты вариации общей $q = \sigma/\overline{X}$, остаточной $q_0 = \sigma_0/\overline{X}$ и объясняемой трендом $q_p = \sigma_p/\overline{X}$ дисперсии КС и ЭГ в летний и зимний периоды. Временные ряды $X(t_i)$ и $Y(t_i)$ имеют близкие параметры трендов и дисперсий в летний и зимний периоды КС и ЭГ (табл. 1), возрастают зимой и убывают летом.

Для оценки разности $D(t_i)$, подставим (4) в (1):

$$D(t_i) = (b_X - b_Y)t_i + (c_X - c_Y) + \varepsilon_X(t_i) - \varepsilon_Y(t_i).$$
(8)

Коэффициенты трендов в зимний и летний периоды $b_X \approx b_Y$, что дает возможность представить коэффициент тренда разности в виде:

$$b_D = b_X - b_Y \approx 0 . \tag{9}$$

Таблица 1

Значения коэффициентов тренда								
Газопровод	Период	Функция	Относительные коэффициенты					
			Co	$10^{6}b_{0}$	$10^2 B$	$10^2 q$	$10^2 q_{\rm p}$	$10^{2}q_{0}$
JЄ	Зима	X	92	12,25	22,3	7,70	3,63	6,78
		Y	92	12,22	21,7	7,69	3,58	6,84
	Лето	X	101	-0,86	1,0	6,20	0,62	6,17
		Y	101	-0,86	1,0	6,24	0,62	6,21
KC	Зима	X	92	13,15	22,5	7,53	3,57	6,63
		Y	91	14,12	20,3	7,95	3,58	7,08
	Лето	X	110	-16,87	58,0	7,78	5,91	5,06
		Y	110	-16,72	55,0	8,04	5,95	5,39

Невыполнение условия (9) свидетельствует о корректируемых или ошибочных измерениях. С учетом (9) соотношение (8) представим в виде:

$$D(t_i) = c_D + \varepsilon_D(t_i);$$

$$c_D = c_X - c_Y;$$

$$\varepsilon_D(t_i) = \varepsilon_X(t_i) - \varepsilon_Y(t_i).$$
(10)

Таким образом, временные ряды разности $D(t_i)$ трендов не создают, что обусловлено равенством (9). Применение критериев наличия тренда (метода поворотных точек, метода разностей и метода Фостера–Стьюдента) свидетельствует об отсутствии трендов $D(t_i)$. Невыполнение равенства (9) КС в зимний период ($b_D = -0,76 \cdot 10^{-6}$) (табл. 1) свидетельствует о корректировке измерений, однако тренды $D(t_i)$ не возникают. Кроме того, завышенное значение общей дисперсии для этого случая также подтверждает корректировку измерений.

Выводы

Показано, что временные ряды прихода и распределения состоят из случайных и периодических функций с периодом в 1,0; 0,5 и 0,33 года. Для данных отчетности необходимо использовать отдельные выборки в зимний и летний периоды равные 128 дням (0,33 года). Эти выборки обладают возрастающим трендом в зимний и убывающим в летний периоды. Для классификации корректируемости измерений используются параметры линейной регрессии. При некорректируемых измерениях коэффициенты линейной регрессии прихода и распределения равны. Временные ряды разности $D(t_i)$ трендов не создают.

Перспективы дальнейших исследований. Модель может быть усовершенствована при использовани нелинейной регрессии (сглаживания) прихода и распределения путем подбора оптимального коэффициента детерминации. Также представляет интерес анализ причин увеличения общей дисперсии разности при корректируемых измерениях.

Литература

 Вимірювання витрати та кількості газу: Довідник / М.П. Андріїшин і др.. – Івано-Франківськ: ПП. "Сімик", 2004. – 160с.: іл.

 Ігуменцев Є.О., Марчук Я.С., Андріїшин М.П. Виявлення перетоків газу в запірної арматурі КС за реєстрацією вібраційного сигналу // Нафтова і газова промисловість. – 2003. – № 2. – С. 13-18.

 Корн Г., Корн Т. Справочник по математике.
 Для научных работников и инженеров. – М.: Наука, 1974. – 832с., ил.

 Бендат Дж., Пирсон А. Применение корреляционного и спектрального анализа: Пер. с англ. – М.: Мир, 1983. — 312с.

5. Дьяконов В. Mathcad 8/2000: Специальный справочник. – С.-Пб.: Питер, 2000. – 592 с.

 Иванов В.В. Анализ временных рядов и прогнозирование экономических показателей. – Х.: XHУ, 1999. – 127 с.

 Ферстер Э., Рёнц. Методы корреляционного и регрессионного анализа. – М.: Финансы и статистика, 1983. – 301с.

Поступила в редакцию 15.05.2008

Рецензент: д-р. техн. наук, проф. В.П. Себко, Национальный технический университет «ХПИ», Харьков.