УДК 539.1.074

Г.В. БОКУЧАВА 1 , Г.С. КАРУМИДЗЕ 2 , А.Ф. КОРЖ 3 , Б.М. ШИРОКОВ 3

 1 Сухумский физико-технический институт им. И. Векуа, Грузия

ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КАРБИДА БОРА, ПОЛУЧЕННОГО РАЗЛИЧНЫМИ МЕТОДАМИ

В работе представлены результаты измерений температурных зависимостей электропроводности, теплопроводности и термо-ЭДС карбида бора различного стехиометрического состава: B_4C и $B_{6,5}C$, полученного плазмохимическим, газофазным методами и методом горячего прессования. Результаты оформлены в виде серии графиков. Показано, что оптимальными характеристиками для использования в качестве реветви высокотемпературного термопреобразователя является $B_{6,5}C$, полученный плазмохимическим методом. Исследованы также зависимости тепло и электрофизических характеристик горячепрессованного карбида бора от изотопного состава. Показано, что увеличение концентрации ^{11}B приводит к улучшению электрофизических свойств материала. Полученный плазмохимическим методом карбид бора состава $B_{6,5}C$ может быть использован в качестве р-ветви при разработке термоэлектрических генераторов для космических аппаратов.

термоэлектрический генератор, автономные источники питания, карбид бора, космические аппараты

Введение

Получение электрической энергии прямым преобразованием из тепла является одной из приоритетных задач современной энергетики. Главной причиной повышенного интереса к методам прямого преобразования тепла в электричество является необходимость создания автономного энергоснабжения искусственных спутников и лабораторий в космосе, обеспечивающих непрерывное функционирование межконтинентальной теле-, радио- и телефонной связи. Такие источники электрической энергии, как правило, радиационностойкие, необходимы также при проведении работ в труднодоступных для подведения стационарных линий электропередач районах.

Наиболее отработанным на практике является метод термоэлектрического преобразования и создание на его базе термоэлектрических преобразователей (ТЭП), изготовленных из полупроводниковых материалов, в т.ч. сплавов, состоящих из ветвей с дырочной (р-типа) и электронной (п-типа) проводимостью. В группе неметаллических твёрдых материалов карбида бора занимает особое место.

Это связано с его особыми свойствами: высокими значениями температуры плавления, твёрдости, механических характеристик по отношению к растяжению и изгибу, нейтральностью по отношению к химическим реакциям с другими веществами, малым удельным весом.

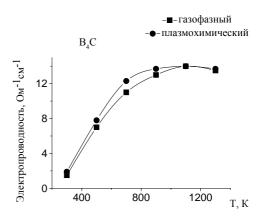
Особым требованием к материалам ТЭП является их радиационная стойкость, поскольку часто на практике часто возникает необходимость сопряжения ТЭП со стенкой ядерного реактора. Карбид бора может выполнять также функцию отражателя нейтронов.

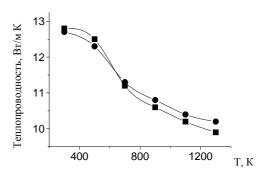
Результаты исследований, опубликованных в [1, 2], показали, что соединение карбида бора с естественной (природной) стехиометрией B_4C является перспективным материалом для создания высоко-

²Национальный центр высоких технологий Грузии, Грузия

³Национальный научный центр «Харьковский физико-технический институт», Украина

температурного ТЭП в составе р-ветви, поскольку имеет структуру с недостатком электронов и является полупроводником с дырочной проводимостью и шириной запрещенной зоны 1,2 эВ. Носители зарядов В₄С биполярны, и их концентрации достигают значений порядка 10^{21} cm⁻³. График удельной электропроводности В₄С имеет экстремум; электропроводность при этом растет до определенных значений с увеличением температуры. Теплоперенос осуществляется за счет миграции фононов, а теплопроводность существенно зависит от пропорции заполнения объема соединения атомами бора и углерода (т.е. от стехиометрии структуры). Чтобы улучшить термоэлектрические характеристики материала, необходимо уменьшить его теплопроводность х.


Эксперимент


Изучение теплофизических и термоэлектрических характеристик изделий из карбида бора, полученных различными методами, проводилось в температурном диапазоне $300-200^{\circ}$ К. Исследовались коэффициент Зеебека S, теплопроводность χ и удельная проводимость σ образцов. Комбинация этих трёх параметров определяет термоэлектрическую эффективность Z материала, поскольку

$$Z = \frac{\sigma \cdot S^2}{\chi} .$$

На рис. 1 приведены полученные экспериментально температурные зависимости электропроводности, теплопроводности и термо-ЭДС для В₄С, полученного газофазным и плазмохимическим методами.

На рис. 2 приведены экспериментальные температурные зависимости электропроводности, теплопроводности и термо-ЭДС для В₄С, полученного методом горячего прессования для материала с различным изотопным составом бора.

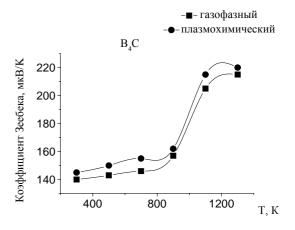
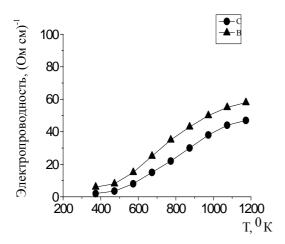
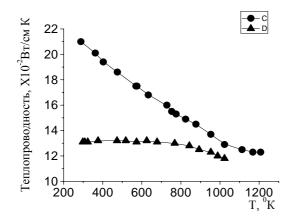




Рис. 1. Температурные зависимости электропроводности, теплопроводности и термо-ЭДС для B_4 С, полученного газофазным и плазмохимическим методами

В работе [1] показано, что материал со стехиометрией $B_{6.5}C$ имеет величину χ , значительно меньшую, чем соединение B_4C , а коэффициент Зеебека

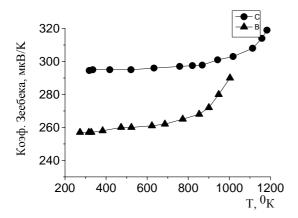
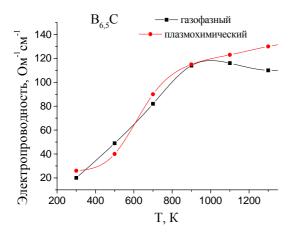
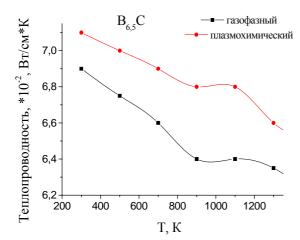


Рис. 2. Температурные зависимости электропроводности, теплопроводности и термо-ЭДС для горячепрессованного B_4C различной плотности и различного изотопного состава по бору:

- \blacksquare B₄C, γ =2190 KΓ/M³, (¹⁰B 86 %, ¹¹B 14 %);
- $-B_4C$, $\gamma=2160$ kg/m³, (^{10}B 98 %, ^{11}B 2 %)


(характеризует величину термо-ЭДС материала в составе ветви ТЭП) для $B_{6.5}$ С имеет значение порядка 180 мкВ/К при температуре 300°К; электропроводность же σ увеличивается с повышением температуры. Все эти тенденции положительно влияют на электрофизические характеристики термопреобразователей.


В настоящей работе приведены также результаты экспериментов по получению образцов из карбида бора B_{6.5}C газофазным и плазмохимическим методами, исследованию их тепловых и электрических характеристик, проведено сравнение с аналогичными характеристиками материала такого же состава, полученного горячим прессованием в вакууме.

В экспериментах [3] при изготовлении образцов карбида бора газофазным методом температура подложки для разных серий изделий изменялась в интервале 1273-1623°К. Реагенты подавались в рабочую камеру в различных соотношениях. Так отношения парциальных давлений газообразных компонентов проточной смеси H₂/BCl₃, составляли 6,3/1; 10/1, 20/1, a BCl₃/C₇H₈-10/1; 5/1; 4/1; 3/1. При осаждении плазмохимическим методом рабочие температуры были на 150 градусов ниже; величины же давлений газов в смеси соотносились, как: $H_2/BCl_3 \approx 20/1$, и $BCl_3/C_7H_8 \approx 10/1$. Карбид бора осаждали на графитовую подложку, после чего подложка удалялась механическим методом. В результате экспериментов в диапазоне указанных выше значений параметров были получены образцы состава В_{6.5}С.

На рис. 3 приведены температурные экспериментально измеренные зависимости электропроводности, теплопроводности и термо-ЭДС для образцов карбида бора $B_{6,5}$ С, полученных газофазным и плазмохимическим методами.

В экспериментах по горячему прессованию в вакууме образцы формировались из мелкодисперсного порошка ¹¹В_{6,5}С, приготовленного методом прямого синтеза из компонентов. Шихта, состоящая из порошка изотопа ¹¹В и углерода (сажа), перемешивалась в турбулентном миксере в течение 4 часов, после

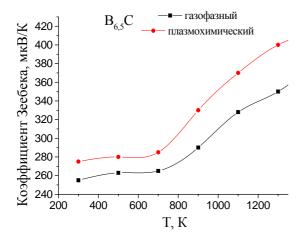
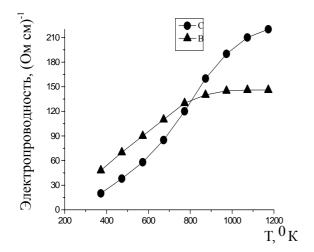


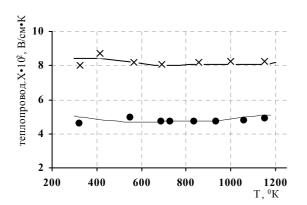
Рис. 3. Температурная зависимость электропроводности, теплопроводности и термо-ЭДС карбида бора состава B_{6,5}C, поученного газофазным и плазмохимическим методами

чего брикетировалась методом холодного прессования в таблетки диаметром 40 мм и толщиной 20 мм. Таблетки укладывались в тигли из карбида бора и

помещались в высокотемпературную вакуумную печь. Процесс синтеза проводился при температуре 2073К в среде аргона и последующим охлаждением со скоростью 100 град/час до температуры 1273°К. Затем таблетки измельчались в шаровой мельнице. После чего порошок подвергался химической обработке 20% соляной кислотой. Затем мелкодисперсный порошок ¹¹В_{6,5}С прессовался горячим методом в графитовых пресс-формах. Прессование производилось при температуре порошка 2173-2273°К и различных значениях давления контактного устройства пресса на дисперсное рабочее вещество (см. таблицу).

Таблица Давление и время прессования образцов


Давление	Время
прессования, МПа	прессования, мин.
15	7
20	3
27-30	6
35-40	10


После механической обработки для снятия напряжений проводился отжиг образцов в высокотемпературной вакуумной печи в течение 2 часов при температуре 2273К и давлении 0,133 Па.

На рис. 4 приведены температурные зависимости электропроводности, теплопроводности и термо-ЭДС образцов из карбида бора $B_{6,3}C$, полученных горячим прессованием в вакууме.

Выводы

Из графиков на рис. 3 и 4 следует, что измеренные на образцах $B_{6,5}C$ при температуре 750 °K значения коэффициента Зеебека находятся в пределах от 250 мкВ/К для горячепрессованных образцов (изотопного состава $^{10}B-2\%$, $^{11}B-98\%$) до 305 мкВ/К. Для образцов, полученных плазмохимическим методом электропроводность меняется от 95 до 105 (Ом см) $^{-1}$, теплопроводность — от 8,0 до 6,5 Вт/м К.

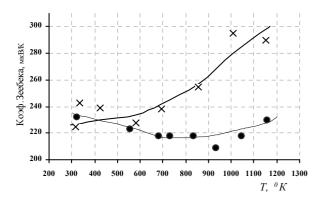


Рис. 4. Температурная зависимость электропроводности, теплопроводности и термо-ЭДС горячепрессованного карбида бора $B_{6,5}C$:

• $-B_{6,5}C$, γ =2,03 г/см³, (^{10}B 2 %, ^{11}B 98 %); $\times -B_{6,5}C$, γ =2,49 г/см³, (^{10}B 2 %, ^{11}B 98 %)

Теплопроводность образцов состава $B_{6,5}$ С слабо снижается с температурой (от 7 до 6,2 Вт/м К) и практически не зависит от метода их получения (газофазного или плазмохимического). С повышением содержания бора коэффициент Зеебека α и электро-

проводность σ возрастают, при этом больший рост наблюдается для газофазных образцов. По абсолютной величине коэффициент Зеебека α плазмохимических образцов выше, чем, газофазных и горячепрессованных. Наибольшее значение $\alpha = 390$ мкВ/К зафиксировано на плазмохимических образцах $B_{6,5}C$ при T = 1200 °К. Электропроводность как газофазных, так и горячепрессованных образцов с повышенным содержанием бора более чувствительна к повышению температуры, чем электропроводность B_4C . Максимальное значение электропроводности $\sigma = 135$ (ом см)-1 достигается при температуре 1200 °К для образцов $B_{6,5}C$ и мало зависит от метода их получения.

Таким образом, как следует из экспериментов, представленных на рис. 1-4, наиболее подходящими теплоэлектрическими характеристиками, для р-ветви термопреобразователя является карбид бора состава $B_{6,5}C$, полученный плазмохимическим методом.

Литература

- 1. Wood Ch. Borides and Related Compounds //
 Proceedings of the International Symposium on Boron.
 Duisburg. 1987. Vol. 3. P. 236-248.
- 2. Karumidze G, Kekelidze L, Shengelia L. Azlactones derived from substituted // American Institute of Physics. 1996. Vol. B124. P.1063-7826.
- 3. Корж А.Ф., Лонин Ю.Ф., Пилипец Ю.О., Хованский Н.А., Шеремет В.И., Широков Б.М. Установка для осаждения материалов из газовой фазы // Физическая инженерия поверхности. 2006. Т. 5, N 1-2. С.98-100.

Поступила в редакцию 26.03.2008

Рецензент: д-р физ.-мат. наук В.М. Хороших, Национальный научный центр «Харьковский физикотехнический институт», Харьков.