УДК 621.438.001 2 (02)

Н.Ф. МУСАТКИН, В.М. РАДЬКО

Самарский государственный аэрокосмический университет им. академика С.П. Королёва, Россия

ОПРЕДЕЛЕНИЕ ОБЛАСТЕЙ РАЦИОНАЛЬНЫХ УДЛИНЕНИЙ СОПЛОВЫХ И РАБОЧИХ ВЕНЦОВ МНОГОСТУПЕНЧАТЫХ ОСЕВЫХ МАЛОРАЗМЕРНЫХ ТУРБИН СО СТУПЕНЯМИ СКОРОСТИ

Поставлена задача улучшения технологичности конструкции осевых малоразмерных турбин (ОМТ) при сохранении уровня кпд. Обоснован выбор в качестве исследуемого параметра удлинения лопаточных венцов. Использованы для решения задачи по определению его влияния на кпд ОМТ методика и оборудование, разработанные в СГАУ. Приведены результаты расчётно-экспериментальных исследований по определению областей рациональных удлинений сопловых и рабочих венцов, во многом обуславливающих технологичность конструкции двух-трёхступенчатых осевых малоразмерных турбин со ступенями скорости как при полном, так и при парциальном подводе рабочего тела. Описаны физические причины влияния удлинения лопаточных венцов на эффективность рабочего процесса в ОМТ. Приводятся рекомендации для газодинамического проектирования указанных типов турбин, справедливые при степенях повышения давления $\pi_{\rm r} = 10...20$, числах Маха $M_{1s} = 1,6...2,2$ и Рейнольдса – $Re = (5...10) \cdot 10^5$.

турбина осевая малоразмерная, число ступеней, степень парциальности, параметр нагруженности, коэффициент полезного действия, аппараты сопловые, колеса рабочие, удлинение лопаток

1. Формулирование задачи

К числу основных геометрических параметров, определяющих облик проточной части осевых малоразмерных турбин (ОМТ), можно отнести

• удлинения лопаточных венцов
$$\overline{h}_{ji} = \frac{h_{ji}}{b_{ji}}$$

где h_{ji} – высота лопаток в *i*-ом сечении;

b_{j i} – хорда профилей лопаток сопловых или рабочих венцов;

индекс *j* указывает на принадлежность к сопловым или рабочим решёткам ОМТ;

• относительный шаг
$$\overline{t_{ji}} = \frac{t_{ji}}{b_{ji}}$$

где t_{ji} – шаг лопаток.

Удлинения \overline{h}_{ji} в значительной степени определяют кпд турбины η_{τ} , осевые габариты и массу турбинного двигателя, что особенно важно при проектировании многоступенчатых бортовых турбоприводов летательных аппаратов длительного функционирования.

От выбранного значения величины \overline{h}_{ii} непосред-

© Н.Ф. Мусаткин, В.М. Радько

ственно зависят хорды профилей лопаток $b_{j\,i}$, а поскольку относительный шаг $\overline{t_{j\,i}}$ выбирается в оптимальных пределах, то и шаг решёток $t_{j\,i}$. Последнее означает, что удлинения предопределяют число лопаток z_i в венце, во многом обуславливающее технологичность конструкции.

Учитывая изложенное, очевидно, что определение рациональных диапазонов \bar{h}_{ji} как сопловых, так и рабочих венцов многоступенчатых ОМТ является актуальной задачей.

2. Решение задачи

К настоящему времени известны работы [6, 7], в которых приведены сведения по выбору удлинений $\bar{h}_{CA\,i}$ и $\bar{h}_{PK\,i}$ одно- и двухступенчатых ОМТ. При этом показано, что $(\bar{h}_{CAi})_{opt} = 0,2...0,3$ и $(\bar{h}_{PKi})_{opt} = 0,15...0,35$. Наличие оптимальных удлинений в венцах соплового аппарата (СА) и рабочего колеса (РК) авторы работы [6] связывают с перераспределением баланса потерь энергии в последних. В частности, при $\bar{t}_{j\,i} = const$ уменьшение $\bar{h}_{j\,i}$ обуславливает возрастание концевых и дисковых потерь, что со-

провождается снижением η_{T} . Но, с другой стороны, поток в межвенцовом зазоре становится более равномерным из-за увеличения абсолютной величины $t_{CA i}$, снижаются относительная шероховатость поверхности каналов и число лопаток в венцах, что сопровождается уменьшением профильных потерь энергии. В результате – η_{T} увеличивается. Противоположное влияние названных двух групп потерь энергии на η_{T} и определяет наличие ($\bar{h}_{i i}$)_{орt}.

В работе [7] лишь отмечается, что при $\pi_{\rm T} = 3...6$ и параметре нагруженности $Y_{\rm T} = 0, 1...0, 2$ удлинения $\overline{h}_{\rm CA\,i}$ и $\overline{h}_{\rm PK\,i}$ для двухступенчатых ОМТ можно принимать такими же, как и для одноступенчатых ОМТ.

Для трёхступенчатых ОМТ рекомендации работ [6, 7] если и могут быть использованы, то лишь частично. Дело в том, что характерные диапазоны $\pi_{\rm T}$ и $Y_{\rm T}$ для выше указанных турбин отличаются количественно, а влияние степени парциальности є на величины $\bar{h}_{j\,i}$ не рассматривалось.

Из этого следует, что надёжных рекомендаций по выбору $(\bar{h}_{i,i})_{opt}$ нет не только для многоступенча-

Рис. 1. Схема проведения исследований по влиянию $\bar{h}_{CA,i}$ и $\bar{h}_{PK,i}$ на η_T ОМТ: *а* – монтажная схема блока отдельной ступени; δ – схема изменения удлинений $\bar{h}_{CA,i}$ и $\bar{h}_{PK,i}$

тых ОМТ, но даже и для одноступенчатых при $\varepsilon < 1$. Для восполнения пробела в СГАУ были проведены обширные экспериментальные исследования.

В качестве объекта исследования использовалась трёхступенчатая турбина блочной конструкции, которая описана в работах [4, 5]. Блочная конструкция ОМТ позволяла изменять количество ступеней и испытывать турбину как одноступенчатую, так и двухступенчатую, и, наконец, как трёхступенчатую. Турбина имела типовое значение среднего диаметра $D_{\rm cp} = 8 \cdot 10^{-2}$ м, высоты лопаток СА первой ступени $h_{\rm CAI} = 1 \cdot 10^{-3}$ м и работала в диапазонах $\pi_{\rm T} = 10...20$ и $Y_{\rm T} = 0,05...0,2$. Рабочим телом являлся сжатый воздух с параметрами состояния: $p_0^* = (10...20) \cdot 10^2$ кПа и $T_0^* = (280...320)$ *K*, что соответствовало числам Маха $M_{1s} = 1,6...2,2$ и Рейнольдса – $Re = (5...10) \cdot 10^5$.

Исследования проводились на тормозном стенде [2], который позволяет получать интегральные характеристики опытных ОМТ в виде зависимостей

$$\eta_{\rm T} = f(Y_{\rm T}, X_1, X_2, X_3, \ldots, X_{10}),$$

где *X_i* – исследуемый параметр с наиболее вероятной погрешностью ± 1,5%.

Методика проведения эксперимента схематично показана на рис. 1, *a*, *б*. Изменение удлинений $\overline{h}_{CA\,i}$ и $\overline{h}_{PK\,i}$ достигалось за счёт увеличения соответствующих значений хорд профилей $b_{CA\,i}$ и $b_{PK\,i}$ (рис 1, *б*). При этом оптимальные значения относительного шага решёток ($\overline{t}_{CA\,i}$)_{opt} и (\overline{t}_{PKi})_{opt} выдерживались постоянными посредством изменения абсолютных значений шага решёток профилей $t_{CA\,i}$ и t_{PKi} , а, следовательно, и числа лопаток в венцах $z_{CA\,i}$ и z_{PKi} .

При изготовлении профилей колёс как CA, так и РК всех без исключения ступеней, соблюдалось геометрическое подобие, что достигалось соответствующим масштабом на пантографе копировальнофрезерного станка. Величина масштаба всякий раз определялась отношением b_i/b_0 , где b_i – значение хорды профиля при произвольной величине $\bar{h}_{j\,i}$; b_0 – величина хорды профиля лопаток для предельного удлинения \bar{h}_{max} , соответствующего минимально возможному (по условиям изготовления) значению абсолютного шага $t_{j \ i \ min}$.

Известно, что шаг решеток t_{ji} определяется отношением $a_{cCA}/\sin(\alpha_{1n})$ для СА или $a_{cPK}/\sin(\beta_{2n})$ – для РК [5], где a_{rj} – ширина горла межлопаточного канала; α_{1n} , β_{2n} – конструктивные углы выходных кромок сопловых и рабочих венцов соответственно.

Минимальное значение $a_{\Gamma j}$ по условиям изготовления не может быть менее $1 \cdot 10^{-3}$ м, а типовые значения углов α_{1n} , β_{2n} лежат в пределах 20...25°. В результате величина $t_{j i \min} = (4, 5...4, 6) \cdot 10^{-3}$ м и соответствовала $b_0 = (6, 8...7, 0) \cdot 10^{-3}$ м.

Все основные геометрические соотношения проточной части ОМТ (рис. 1, *a*) (верхние и нижние перекрыши $\Delta_{\rm B}$ и $\Delta_{\rm H}$, относительные осевые и радиальные зазоры $\overline{\Delta}_{\rm o}$ и $\overline{\Delta}_{r}$, формы профилей лопаток) выполнялись в соответствии с рекомендациями [6] и оставались неизменными для всех опытных вариантов $\overline{h}_{j\,i}$. Опыты проводились как при полном ($\varepsilon = 1$), так при парциальном ($\varepsilon < 1$) подводах рабочего тела. При исследовании ОМТ с $\varepsilon < 1$ оптимальные значения параметров парциального подвода в ступенях ($\varepsilon_{\rm I}/\varepsilon_{\rm II}$) и ($\varepsilon_{\rm II}/\varepsilon_{\rm III}$) выбирались по данным [4], относительного шага ($\overline{t}_{j\,i}$)_{орт} – по [5].

На первом этапе исследовалось влияние удлинения лопаток РК первой ступени \bar{h}_{PK1} на кпд η_{TI} . Удлинение лопаток СА первой ступени при этом составляло $\bar{h}_{CA1} = 0,3$ и в процессе опытов данного этапа не изменялось. Как подтверждение физической картины этому можно принять разъяснения [7], что в активных турбинах срабатывание всего теплоперепада именно в первом СА определяет удлинение \bar{h}_{CA1} посредством газодинамических предпосылок, которое не может варьироваться в широких пределах без заметного снижения η_{T} . Для экспериментов было изготовлено семь РК первой ступени с различными удлинениями от 0,35 до 0,1.

В первой серии опытов блоки второй и третьей ступеней были сняты с общего вала, и их влияние не сказывалось на результатах исследования. Величина ε₁ изменялась от 0,06 до 1,0.

Для каждой степени парциальности при разных РК и, соответственно, \overline{h}_{PK1} определялись характеристики $\eta_{T1} = f(Y_T)$. Полученные зависимости при изменении π_T во всём исследуемом диапазоне сравнивались между собой согласно условиям: $Y_T = const$ и $\varepsilon_1 = const$.

На основании первичного анализа были получены зависимости $\eta_{TI} = f(\varepsilon_I, \bar{h}_{PKI})$ при различных π_T и Y_T .

Аналогичная последовательность проведения опытов наблюдалась и при изучении влияния $\bar{h}_{PK II}$ на $\eta_{\tau II}$ двухступенчатой ОМТ и $\bar{h}_{PK III}$ на $\eta_{\tau III}$ трёх-ступенчатой ОМТ. Очевидно, что соотношения ($\epsilon_{I}/\epsilon_{II}$) и ($\epsilon_{II}/\epsilon_{III}$) выдерживались согласно рекомендациям [4].

Полный анализ кривых показал, что качественно вид опытных зависимостей остаётся одинаковым для всего диапазона характерных параметров: $\pi_{\rm T} =$ = 10... 20; $Y_{\rm T} = 0.05...02$ и $\epsilon_{\rm I} = 0.06...10$.

На рис. 2, *a*, *б* приведена обобщённая зависимость $\eta_{T} = f(\varepsilon_{I}, \bar{h}_{PK I})$ для наиболее характерных значений $\pi_{T} = 15$ и $Y_{T} = 0,2$. Оптимальный диапазон удлинений $\Delta(\bar{h}_{PK I})_{opt}$ ограничивается справа сплошной линией $\bar{h}_{PK i max} = const$ при значении последнего параметра, равном 0,37, а слева – пунктирной линией, за левым пределом которой снижение η_{T} составляло более 1,5% (абс.), то есть более погрешности эксперимента. Предложено называть эту линию границей оптимальных диапазонов удлинений лопаточных венцов.

Зависимости, представленные на рис. 2, *a*, *б*, позволяют оценить влияние многоступенчатости преобразования энергии в ОМТ на максимальную величину кпд $\eta_{\text{т} max}$ при $\varepsilon_1 = 0, 5...1, 0$. Можно утверждать, что $\eta_{\text{т} max}$ не зависит от изменения $\overline{h}_{\text{PK I}}$ в диапазоне 0,2...0,36, от $\overline{h}_{\text{PK II}}$ – в диапазоне 0,18...0,36 и от $\overline{h}_{\text{PK III}}$ – на отрезке от 0,17 до 0,36. Пределы $\Delta(\overline{h}_{PK i})_{opt}$ сохраняются для всех значений $\varepsilon_1 \ge 0, 5$.

Опытные характеристики $\eta_{T} = f(\varepsilon_{I}, \bar{h}_{PK i})$ показали так же, что интенсивность изменения η_{T} за границей оптимальных диапазонов снижалась с уменьшением ε_{I} . К примеру, относительное падение $\eta_{\tau I}$ для РК I при уменьшении предельного значения $\Delta(\bar{h}_{PK I})_{opt}$ на 25% (рис. 2, *a*) составляло 10,2% при $\varepsilon_{I} \ge 0,5$ и всего лишь 3,5% при $\varepsilon_{I} = 0,06$.

Такая тенденция изменения $\eta_{\rm T}$ оставалась характерной и для других колёс (РК II и РК III, рис. 2, *б*, *в*). Объяснить её можно следующим образом. При $\varepsilon_{\rm I} \ge 0,5$ потери энергии рабочего тела при растекании его на концах дуги подвода невелики в сравнении с концевыми потерями энергии. Поэтому, снижение $\overline{h}_{\rm PK i}$ от предельного значения $(\overline{h}_{\rm PK I})_{max} = 0,2$, вызывая заметный рост концевых потерь энергии, определяет интенсивность изменения $\eta_{\rm T}$. При $\varepsilon_{\rm I} \le 0,5$ влияние потерь энергии от растекания рабочего тела на концах дуги подвода становится более весомым [7]. Как следствие, изменение $\overline{h}_{PK\,i}$ в тех же пределах, что и в случае $\varepsilon_I \ge 0,5$, вызывает снижение потерь энергии рабочего тела от растекания, которое заметно компенсирует рост концевых потерь. В результате интенсивность трансформаций величин η_T снижается.

При анализе зависимостей $\eta_{\rm T} = f(\varepsilon_{\rm I}, \bar{h}_{\rm PK i})$ обращает на себя внимание следующая особенность. С уменьшением $\varepsilon_{\rm I}$ диапазон оптимальных значений $\Delta(\bar{h}_{PK i})_{opt}$ суживается. Например, для PK I при $\varepsilon_{\rm I} \ge$ 0,5 величина $\Delta(\bar{h}_{PK I})_{opt} = 0,2...0,36$, а при $\varepsilon_{\rm I} = 0,06$ этот диапазон составляет 0,25...0,36. Качественно такое же поведение кривых характерно для PK II и PK III. Это можно объяснить только тем, что при малых $\varepsilon_{\rm I} < 0,4$ баланс потерь энергии (концевых, на трение, выколачивание и растекание на концах дуги подвода) сохраняется в меньших пределах из-за начинающегося проявления дисковых потерь энергии при более широких венцах [7], что соответствует более низким удлинениям $\bar{h}_{\rm PK i}$.

Влияние удлинений СА II и СА III изучалось в той же последовательности и по той же методике, что и рабочих венцов.

Приведенный первичный анализ позволил построить обобщённые кривые $\eta_{\rm T} = f(\varepsilon_{\rm I}, \bar{h}_{\rm CA\,i})$. Установлено, что качественный характер последних одинаков в диапазонах $\pi_{\rm T} = 10...20$; $Y_{\rm T} = 0,05...0,2$. Для $\pi_{\rm T} = 15$ и $Y_{\rm T} = 0,2$ такие зависимости приведены на рис. 3, *a*, *б*, из которых следует, что при $\varepsilon_{\rm I} \ge 0,5$ величина $\Delta(\bar{h}_{CA\,i})_{opt}$ одинакова как для второй, так и для третьей ступеней и находится в пределах 0,2...0,35. Указанный предел практически полностью при $\varepsilon_{\rm I} \ge 0,5$ соответствует оптимальным удлинениям $\Delta(\bar{h}_{PK\,i})_{opt}$ (рис. 2, *а...в*), что означает справедливость начального предположения об аналогичном влиянии потерь энергии рабочего тела в сопловых и рабочих венцах ОМТ со ступенями скорости. Дополнительным подтверждением служит сужение диапазона $\Delta(\overline{h}_{CA\,i})_{opt}$ при $\varepsilon_{I} < 0,4$, который при наименьшей исследованной степени парциальности $\varepsilon_{I} = 0,06$ составлял 0,25...0,35.

В то же время расслоения левых границ оптимального диапазона $\Delta(\bar{h}_{CA\,i})_{opt}$ в сопловых венцах, в отличие от рабочих, не наблюдается. Объяснение, как указывается выше, заключается в том, что в рабочих венцах, особенно при низких степенях парциальности $\varepsilon_{\rm I} < 0,4$, начинают проявляться дисковые

последние неподвижны. На рис. 4 приведены зависимости $\Delta(\overline{h}_{CA\,i})_{opt} = f(\varepsilon_{\rm I})$ при $\pi_{\rm T} = 10...20$; $Y_{\rm T} = 0.05...02$, а на рис. 5 – $\Delta(\overline{h}_{PK\,i})_{opt} = f(\varepsilon_{\rm I})$ для тех же диапазонов $\pi_{\rm T}$ и $Y_{\rm T}$. Представленный вид зависимостей наиболее удобен в практике проектирования многоступенчатых ОМТ.

потери, а в сопловых венцах таковых нет, поскольку

Заканчивая анализ проведённых исследований, следует отметить, что наряду с выявленным свойством двух-трёхступенчатых ОМТ сохранять практически неизменным $\eta_{\rm T}$ в широких диапазонах $\Delta(\overline{h}_{CA\,i})_{opt} = 0,20...0,35$ и $\Delta(\overline{h}_{PK\,i})_{opt} = 0,20...0,36$ при $\varepsilon_1 \ge 0,5$, для меньших значений ε_1 эти диапазоны суживаются: при $\varepsilon_1 = 0,06$ для РК первой ступени (рис. 5) на 25% (отн.), для второй – на 20% (отн.), для третьей – до 15% (отн.). При этом снижение $\eta_{\rm T}$ не превышает (2...3)% (отн.). Для сопловых венцов как второй, так и третьей ступени сужение одинаково и составляет до 25% при $\varepsilon_1 = 0,06$.

Выявленное обстоятельство является весьма важным в технологическом отношении, так как позволяет при необходимости выполнять лопатки рабочих венцов с малыми удлинениями, а, значит, с меньшим числом лопаток, более массивными, с увеличенными толщинами входных и выходных кромок. Последнее, по нашему мнению, позволяет повысить ресурс их работы и надёжность ОМТ в целом. При этом некоторые ограничения для сопловых венцов несущественны, поскольку последние выполняются, как правило, с парциальным подводом рабочего тела. Следовательно, изготовление лопаток СА, в отличие от РК, не является столь проблемным [7].

Результаты обработки и обобщения экспериментальных данных позволяют рекомендовать для выбора оптимальных значений удлинений следующие эмпирические формулы.

Оптимальному удлинению сопловых венцов соответствует интервал значений (рис. 4):

$$\Delta(\overline{h}_{CA\,i})_{opt\ e} = \overline{h}_{CA\,i\,min}\dots \overline{h}_{CA\,i\,max},\tag{1}$$

где $\overline{h}_{CA\,i\,min} = 0,2; \ \overline{h}_{CA\,i\,max} = 0,35$ при $\varepsilon_{I} \ge 0,5.$

При степени парциальности $\epsilon_{I}\,{<}\,0,5$

$$\Delta(\overline{h}_{CA\,i})_{min\,e} = 0.2 + 5 \cdot 10^{-2} Y_{\rm T} (1 + \varepsilon_{\rm I}) \times$$

$$\times \left[\frac{0, 5 - \varepsilon_I}{\varepsilon_I}\right]^{(1 + \varepsilon_I)}.$$
 (2)

Для РК оптимальный интервал удлинений (рис. 5) можно определить из выражения:

$$\Delta(\overline{h}_{PK\,i})_{opt\ e} = \overline{h}_{PK\,i\,min} \dots \overline{h}_{PK\,i\,max},\tag{3}$$

где $\bar{h}_{PK\,i\,min} = 0, 2\sqrt{z}$; $\bar{h}_{PK\,i\,max} = 0,35$ при $\varepsilon_1 \ge 0,5$ (здесь *z* – число ступеней в турбине).

Для значений $\varepsilon_{I} < 0,5$

$$\Delta(\bar{h}_{PK\,i})_{min\,e} = 0,2+5\cdot10^{-2}Y_{\rm T}\sqrt{z}\,(1+\varepsilon_{\rm I}) \times \\ \times \left[\frac{0,5-\varepsilon_{I}}{\varepsilon_{I}}\right]^{(1+\varepsilon_{I})}.$$
(4)

Адекватность полученных результатов была проверена ещё для двух типоразмеров двух- трёхступенчатых ОМТ, которые имели значения $D_{cp} = 0,10$ и 0,05 м. контрольные испытания показали хорошую сходимость опытных данных и результатов расчётов по выражениям (1)...(4).

Таким образом, поставленная в начале работы задача решена. Найдены оптимальные диапазоны удлинений сопловых и рабочих венцов многоступенчатых ОМТ со ступенями скорости как при полном ($\varepsilon_I = 1$), так при парциальном ($\varepsilon_I < 1$) подводах рабочего тела. Установлено, что полученные расчётные соотношения (1)...(4) справедливы для чисел $M_{1s} = 1, 6...2, 2$ и – $Re = (5...10) \cdot 10^5$, которые соответствуют наиболее характерным режимам работы и типоразмерам ОМТ.

Литература

 Быков Н.Н., Емин О.Н. Выбор параметров и расчёт маломощных турбин для привода агрегатов. – М.: Машиностроение, 1972. – 228 с.

2. Лапчук О.А., Тихонов Н.Т. Электротормоз для испытаний микротурбин // В сб. "Испытания авиационных двигателей". – Уфа: УАИ. – 1980. – № 8. – С. 126-129.

3. Мусаткин Н.Ф. Радько В.М. К вопросу распределения теплоперепада в двухступенчатых осевых малоразмерных турбинах со ступенями давления // Изв. вузов. Авиационная техника. – Казань: КГТУ (КАИ). – 2003. – № 3. – С. 26-28.

 Мусаткин Н.Ф. Радько В.М. Влияние параметров парциального подвода рабочего тела на кпд многоступенчатых осевых малоразмерных турбин // Авиационно-космическая техника и технологии. – Х.: НАКУ «ХАИ». – 2006. –№ 7(33). – С. 81-86.

5. Мусаткин Н.Ф. Радько В.М. Определение рациональных диапазонов относительного шага сопловых и рабочих венцов многоступенчатых осевых малоразмерных турбин // Вестник двигателестроения. – Запорожье: ОАО «Мотор Сич». – 2007. – № 3. – С. 95-100.

Мусаткин Н.Ф. Тихонов Н.Т. Влияние верхней и нижней перекрыш на КПД парциальной осевой воздушной микротурбины // Изв. вузов. Авиационная техника. – Казань: КАИ. – 1979. – № 3. – С. 106-108.

 Наталевич А.С. Воздушные микротурбины. – М.: Машиностроение, 1983. – 192 с.

Поступила в редакцию 5.05.2008

Рецензент: д-р техн. наук А.А. Маркин, ГУП ГРКЦ «ЦСКБ-Прогресс», Самара, Россия.