УДК 621.165:532.6

А.В. РУСАНОВ, Н.В. ПАЩЕНКО

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины, Харьков, Украина

АЭРОДИНАМИЧЕСКОЕ УСОВЕРШЕНСТВОВАНИЕ ПЕРВЫХ ДВУХ СТУПЕНЕЙ ЦНД ПАРОВОЙ ТУРБИНЫ МОЩНОСТЬЮ 200 МВт

Представлены результаты модернизации первых двух ступеней цилиндра низкого давления паровой турбины мощностью 200 МВт. Предложен метод профилирования лопаток, в котором профиля задаются кривыми четвертого порядка. Расчеты потерь, КПД и анализ эффективности обтекания выполнены на основе результатов численного моделирования пространственных вязких течений в лопаточных аппаратах турбомашин. Разработана проточная часть первых двух высоконагруженных ступеней ЦНД паровой турбины. Ступени модернизированной конструкции обеспечивают повышение КПД на 2,9 % и прирост мощности 3,43 МВт (на один поток).

турбина, проточная часть, цилиндр низкого давления, модернизация, вычислительная аэродинамика, трехмерное вязкое течение

Введение

Значительная часть работающих на электростанциях Украины паровых турбин введена в эксплуатацию более 30 лет назад, и к настоящему времени их наработка превзошла или приближается к значению 200000 часов, что вдвое превышает установленный ресурс. На сегодняшний день большинство имеющихся конструкций ЦНД паровых турбин имеет четыре ступени, причем наиболее устаревшие машины выполнены с последней ступенью Баумана. Существует несколько вариантов ЦНД с тремя ступенями [1], в которых на последней ступени срабатывается больший тепловой перепад (по сравнению с четырьмя ступенями). Увеличение нагруженности последней ступени приводит к уменьшению эффективности ее работы при низких значениях давлений в конденсаторе (от 0,05 ата и ниже) [2].

В работе рассмотрены возможности аэродинамической модернизации ЦНД паровой турбины мощностью 200 МВт, выполненной с использованием современных методов вычислительной гидрогазодинамики. Целью работы являлось создание проточной части первых двух ступеней трехступенчатого ЦНД паровой турбины, срабатывающих повышенный тепловой перепад (по сравнению с существующими прототипами), что обеспечивает разгрузку последней ступени и, соответственно, приводит к повышению ее аэродинамической эффективности. Направляющие аппараты (НА) и рабочие колеса (РК) модернизированной проточной части разработаны с помощью предложенного в работе метода, который основан на описании спинки и корытца профилей лопаток кривыми четвертого порядка.

1. Метод расчета течения

Расчеты трехмерных вязких течений выполнены с использованием программного комплекса *FlowER* [3], который:

 тщательно апробирован при решении задач исследования течений вязкого газа в проточных частях турбомашин [4, 5];

 обладает необходимой достоверностью получаемых результатов как по качественному анализу трехмерного вязкого течения, так и по количественной оценке характеристик турбомашины. Погрешность расчета потерь кинетической энергии и КПД ступеней турбины составляет около 0,5–1% (абсолютных) [5]; зарекомендовал себя при проектировании и модернизации лопаточных машин [5];

• используется рядом предприятий Украины, России и Польши при разработке турбомашин.

Основные элементы математической модели, реализованной в комплексе программ *FlowER*:

• осредненные по Рейнольдсу нестационарные уравнения Навье-Стокса [6];

• двухпараметрическая дифференциальная модель турбулентности SST Ментера [7];

• неявная квазимонотонная ENO-схема повышенной точности,

соответствуют современному состоянию вычислительной газодинамики.

2. Метод профилирования лопаток

Лопаточные аппараты задаются произвольным набором плоских профилей, которые описываются двумя окружностями (входная и выходная кромки) и двумя кривыми четвертого порядка (спинка и корытце). Исходными данными для построения плоского профиля являются: ширина лопатки; геометрический угол входа; эффективный угол выхода; угол заострения входной кромки; радиусы входной и выходной кромок; шаг решетки; относительное расстояние за выходной кромкой (в долях от ширины лопатки), где вторые производные кривых четвертого порядка, описывающих профиль (спинку и корытце), равны 0.

Дополнительно к перечисленным данным задается условие обеспечения минимального значения максимальной кривизны, что, как показывает опыт [8], приводит к улучшению аэродинамического качества турбинных лопаток.

С целью уменьшения количества исходных данных, необходимых для задания лопатки, с одной стороны, и обеспечения монотонности изменения профилей лопатки по высоте, с другой стороны, исходные данные задаются в трех произвольных сечениях. В этом случае шаг решетки не задается, а определяется по радиусу сечения и числу лопаток. Исходные данные в необходимом количестве произвольных сечений вычисляются интерполяцией по параболической зависимости.

3. Исходная проточная часть

В качестве объекта исследования рассмотрена предложенная ХЦКБ «Энергопрогресс» трехступенчатая проточная часть ЦНД паровой турбины мощностью 200 МВт, вид которой представлен на рис. 1, а основные геометрические характеристики – в таблице 1 [1].

Рис. 1. Проточная часть исходного ЦНД: а – меридиональное сечение; б – НА первой ступени; в – РК первой ступени; г – НА второй ступени; д – РК второй ступени

Усовершенствование последней ступени привело к существенному улучшению аэродинамических характеристик ЦНД [2], однако на режимах глубокого вакуума уровень ее КПД остался относительно невысоким. С целью повышения аэродинамической эффективности проточной части, особенно на режимах низких давлений в конденсаторе (ниже 0,05 ата), выполнено перераспределение теплового перепада между ступенями – нагруженность первых двух ступеней увеличена, а последней уменьшена.

Расчеты исходной конструкции первых двух ступеней выполнены как с учетом наличия радиальных зазоров в лопатках РК (прототип [1]), так и с обандаженными лопатками. Конструкция с обандаженными лопатками исследовалась на двух режимах обтекания – с исходным и увеличенным тепловыми перепадами.

Таблица 1

Геометрические характеристики исходной и модернизированной конструкций

Пара-	Ис	ходн	ый ЦІ	łД	Модернизи- рованный ЦНД			
метр	1 ступень		2 ступень		1 ступень		2 ступень	
	HA	РК	HA	РК	HA	РК	HA	РК
l/b *	3,95	5,54	3,58	7,7	0,95	1,73	2,13	3,73
t/b *	0,77	0,65	0,75	0,72	0,78	0,69	0,75	0,54
D/l	4,73	4,65	3,59	3,55	13,17	11,78	6,03	6,0
<i>Z</i> , шт	76	124	54	120	50	92	54	130
α _{1эф} , β _{2эф} , град *	11,16	14,83	12,07	17,66	13,41	15,18	14,93	16,67

 * по среднему сечению, отсчитываются от осевого направления

В табл. 2 приведены результаты выполненных расчетов. Замена лопаток РК на обандаженные приводит к уменьшению потерь кинетической энергии, росту мощности и КПД.

Увеличение теплового перепада на первых двух ступенях повышает мощность на 1,66 МВт, при этом основные изменения аэродинамических характеристик происходят во второй ступени, что связано с «запиранием» потока в ней. На всех режимах течения углы выхода потока из ступеней существенно отличны от осевого направления. На рис. 2 представлены распределения статического давления на поверхностях лопаток в средних сечениях на режимах обтекания с увеличенным тепловым перепадом. Видно, что распределение давлений не монотонно (на стороне разрежения), а нагруженность лопаток не равномерна (по ширине). На основе анализа полученных результатов был сделан вывод о необходимости модернизации проточной части ЦНД.

Таблица 2

Газодинамические характеристики исходных и модернизированных ступеней

	ЦНД										
	Исходный										
	номина	пьный	<u>vвели-</u>	Модер-							
Параметр	пеж	сим	увели ченный								
Indpanierp	срад	без рад	тепло-	низиро-							
	с рад. 2920ра-	ees pag.	вой пе-	ванный							
	зазора- ми в РК	ъ РК	репал								
		BIK	репад								
Полное давление на	117	117	117	117							
входе, кПа	117	11/	11/	117							
Полная температура	103	103	103	103							
на входе, К	495	495	495	т/Ј							
1_g ступац											
-		ль									
Статическое давле-	60.8	60.9	60.0	51.8							
ние на выходе, кПа	00,8	00,9	00,0	51,0							
Степень понижения											
полного давления в	1,83	1,84	1,87	2,2							
ступени											
Реактивность, р	0,355	0,386	0,388	0,518							
Потери кинетиче-	10.4	07	07	6.2							
ской энергии, %	10,4	8,7	0,/	0,2							
Мощность ступени,	(57	67	6.95	0.00							
МВт	0,57	0,/	0,85	9,08							
Абсолютный угол											
выхода потока,	-27,81	-35,16	-37,11	8,5							
град *			, i i i i i i i i i i i i i i i i i i i								
2											
2-я ступень											
Статическое давле-	27.8	27.8	21.0	21.9							
ние на выходе, кПа	27,8	27,8	21,8	21,0							
Степень понижения											
полного давления в	2,17	2,17	2,6	2,34							
ступени											
Реактивность, р	0,379	0,386	0,445	0,542							
Потери кинетиче-	0.7	0.7	07	0.0							
ской энергии, %	9,7	9,7	8,7	8,0							
Мощность ступени,	7.26	7 27	0.07	0.10							
МВт	7,26	1,37	8,87	8,18							
Абсолютный угол											
выхода потока,	-21,49	-24,48	-41,25	7,44							
град *	· · ·		, in the second s	, i i i i i i i i i i i i i i i i i i i							
<u> </u>		2		U							
Суммарные хар	актерис	тики 2-х	ступен	еи							
Потери кинетиче-	0.5	0.0	0.1								
ской энергии, %	9,5	8,8	8,1	0,0							
Потери с выходной	2.5	2.4	4.5	2.1							
скоростью, %	2,5	2,4	4,5	2,1							
Мощность, МВт	13,83	14,06	15,72	17,26							
КПД адиабатиче-	00.7	01.0	01.0	02.4							
ский, %	90,5	91,2	91,9	93,4							

* по среднему сечению, отсчитываются от осевого направления

Рис. 2. Распределение давления в среднем сечении на поверхности лопатки по ширине: ---- исходная конструкция (с увеличенной нагрузкой); — модернизированная конструкция

4. Модернизированная проточная часть

Вид модернизированной проточной части первых двух ступеней показан на рис. 3, а основные геометрические характеристики даны в табл. 1.

Лопатки модернизированных ступеней спроектированы по методике, описанной ранее, и имеют существенно большие значения *D/l*.

Рис. 3. Модернизированная проточная часть: а – меридиональное сечение;

б – НА первой ступени; в – РК первой ступени;

г – НА второй ступени; д – РК второй ступени

Из представленных в табл. 2 и на рис. 2 результатов расчета модернизированной проточной части видно:

 прирост теплового перепада распределился между двумя ступенями (в исходном варианте реализовался только на второй ступени);

 углы выхода потока из ступеней стали существенно ближе к осевому направлению;

- увеличилась реактивность ступеней;

 улучшилось распределение давлений на поверхностях лопаток; потери кинетической энергии уменьшились на 2,9%;

 потери кинетической энергии с выходной скоростью уменьшились на 0,4%;

 увеличилась мощность двух ступеней на 3,44 МВт (на один поток).

Заключение

 На основе анализа результатов расчета трехмерного течения потока в проточной части ЦНД паровой турбины мощностью 200 МВт предложено направление ее модернизации.

 Предложен метод профилирования лопаток, в котором профиля описываются кривыми четвертого порядка.

 С помощью предложенного метода профилирования разработаны первые две ступени проточной части ЦНД, срабатывающие повышенный тепловой перепад.

 Модернизированная проточная часть первых двух ступеней ЦНД обеспечивает увеличение адиабатического КПД на 2,9 % и мощности на 3,43 МВт (на один поток).

 Целью дальнейших исследований является разработка последней ступени, предназначенной для совместной работы с предложенными первыми ступенями ЦНД паровой турбины.

Литература

 Мамонтов Н.И., Пугачева Т.Н. Некоторые проблемы реконструкции и модернизации паровых турбин тепловых электростанций Украины // Энергетические и теплотехнические процессы и оборудование. – 2008. – № 6. – С. 152-161.

2. Русанов А.В., Ершов С.В., Пащенко Н.В., Яковлев В.А. Аэродинамическое усовершенствование последней ступени цилиндра низкого давления паровой турбины мощностью 200 МВт // Пробл. машиностроения. – 2007. – **10**, № 4. – С. 53-61.

3. Єршов С.В., Русанов А.В. Комплекс програм розрахунку тривимірних течій газу в багатовінцевих турбомашинах «FlowER»: Свідоцтво про державну реєстрацію прав автора на твір, ПА № 77. Державне агентство України з авторських та суміжних прав, 19.02.1996.

4. Lampart P., Rusanov A., Yershov S., Marcinkowski S., Gardzilewicz A. Validation of a 3D RANS Solver With a State Equation of Thermally Perfect and Calorically Imperfect Gas on a Multi-Stage Low-Pressure Steam Turbine Flow // Transactions of the ASME. Journal of Fluids Engineering. – 2005. – 127, № 1, January. – C. 83-93.

5. Lampart P., Yershov S., Rusanov A. Validation of turbomachinery flow solver on turbomachinery test cases // International conference SYMKOM'02: Compressor & turbine stage flow path theory, experiment & user verification, Cieplne Maszyny Przeplywowe. Turbomachinery., Politechnika Lodzka, Lodz, Poland. – 2002, No. 122. – P. 63-70.

6. Wilcox D.C. Turbulence Modeling for CFD. – 2nd
ed. – DCW Industries, Inc., La Canada, California,
2004. – 540 p.

7. Menter F.R. Two-equation eddy viscosity turbulence models for engineering applications // AIAA J. – 1994. – 32, № 11. – P. 1299-1310.

 8. Бойко А.В., Говорущенко Ю.Н. Основы теории оптимального проектирования проточной части осевых турбомашин. – Х.: Выща школа, 1989. – 217 с.

Поступила в редакцию 30.05.2008

Рецензент: канд. техн. наук, с.н.с. В.Н. Голощапов, Институт проблем машиностроения им. А.Н. Подгорного НАН Украины, Харьков.