УДК 621.165:621.438:621.65.03

В.Ф. ШАТОХИН, С.Д. ЦИММЕРМАН

ОАО «Калужский турбинный завод», Россия

ОЦЕНКА ВОЗМОЖНОСТИ РАЗВИТИЯ ОБКАТА ПОСЛЕ МГНОВЕННОЙ РАЗБАЛАНСИРОВКИ РОТОРА

Предполагается, что для обката (качения) ротора по статору существенное значение имеют кинематические характеристики, которые ротор приобрёл при его движении в зазоре, после какого либо воздействия (внешнего импульсного воздействия, мгновенной разбалансировки и т.п.). На примере однодискового ротора рассмотрено движение ротора в зазоре при различных величинах разбалансировки и динамических характеристиках ротора. Показаны условия возникновения обката, силы, возникающие в точке контакта ротора и статора, и изменение кинематических характеристик за время ударного взаимодействия. Полученные результаты позволяют сделать вывод, что после мгновенной разбалансировки к моменту соприкосновения ротора со статором угловая скорость вращения ротора вокруг центра расточки статора сопоставима с угловой скоростью вращения ротора. При больших коэффициентах трения f >0,2 время выхода на обкат (см. предыдущий доклад авторов), ротора, когда скорость его вращения была значительно удалена от резонанса, а другие обстоятельства, способствующие развитию обката, были созданы в процессе неправильной эксплуатации установки

мгновенная разбалансировка, обкат, контакт ротора и статора, кинематические характеристики движения

Введение

Исключить поломки вращающихся элементов валопровода турбоагрегата (ТА) по различным причинам не представляется возможным. Например, по оценкам исследовательского института США EPRI, причиной 73% случаев вынужденных остановов паровых турбин ЭС являлись поломки рабочих лопаток [1]. Мгновенная разбалансировка ротора, связанная с отрывом лопатки или участка диска, приводит к нестационарным колебаниям ротора, соприкосновению вращающегося ротора со статором, а возможно и дальнейшему развитию аварии. Нестационарные колебания ротора после различного рода воздействий, обкат (качение) ротора по статору рассматривались многими авторами при разных способах представления этого достаточно сложного явления (см. список литературы в [2-4]). Опыты с вращающимся диском показывают, что с момента контакта с неподвижной поверхностью диск успокаивается, прежде чем начинается качение. Очевидцы аварий ТА с катастрофическими последствиями [3] утверждают, что после ощутимого удара, на какое то мгновение, ТА затихает с последующим развитием процесса обката, и в худшем случае, вплоть до разрушения ТА.

В [5] приведен алгоритм расчёта нестационарных колебаний ротора в пределах зазора для достаточно сложной схематизации ротора на упругоинерционных опорах с демпфированием, представлены результаты расчётов кинематических и силовых факторов при отсутствии контакта ротора со статором. Здесь для оценки порядка сил, возникающих после контакта ротора со статором в случае мгновенной разбалансировки величиной ε, определены кинематические характеристики движения однодискового ротора в зазоре, условия возникновения качения (обката) при контакте со статором, силы в точке контакта, изменения основных характеристик движения за время τ ударного взаимодействия между ротором и статором.

Постановка задачи

Диск на упругом безинерционном валу (рис. 1, а, б) вращается с угловой скоростью ω. На рис. 1: G – вес диска; g – ускорение свободного падения; ω – рабочая частота вращения ротора; р – собственная частота колебаний ротора; κ – жёсткость ротора; f – коэффициент трения скольжения; r - радиус диска (вала); δ – зазор между ротором и статором; t – время; ε – величина разбалансировки; а – отношение рабочей частоты вращения к собственной частоте ротора; θ , $\dot{\theta}$, $\ddot{\theta}$ – положение точки контакта, угловая скорость (ускорение) при движении диска вокруг центра расточки статора; Т, Nсила трения, сила нормального давления в точке контакта; т – время ударного взаимодействия; I = $= 1/2 \cdot m \cdot r^2$ – момент инерции диска относительно собственной оси; $I_0 = I + m \cdot \delta^2$ – момент инерции диска относительно оси расточки статора.

а – ротор; б – схема контакта ротора со статором

Время торможения ротора в момент контакта принято за время τ ударного взаимодействия между ротором и статором, время выхода на обкат. Величина мгновенной разбалансировки – порядка 0.1% от веса ротора на радиусе 1 м.

Условия, необходимые для развития обката

После мгновенной разбалансировки движение центра масс диска описывается дифференциальными уравнениями (1):

$$m\ddot{x} + kx = m\omega^{2}\varepsilon\cos\omega t ;$$

$$m\ddot{y} + ky = m\omega^{2}\varepsilon\sin\omega t ;$$

$$\ddot{x} + p^{2}x = \omega^{2}\varepsilon\cos\omega t ;$$

$$\ddot{y} + p^{2}y = \omega^{2}\varepsilon\sin\omega t ;$$

$$p^{2} = \frac{k}{m} ; \alpha = \frac{\omega}{p} .$$

(1)

Решение уравнений (1) при начальных условиях: $t = 0; x = 0; y = 0; \dot{x} = 0; \dot{y} = 0;$ позволяют получить кинематические характеристики движения ротора непосредственно в момент контакта со статором:

$$x = -\frac{\alpha^{2}\varepsilon}{1-\alpha^{2}} (\cos pt - \cos \omega t);$$

$$y = -\frac{\alpha^{2}\varepsilon}{1-\alpha^{2}} (\alpha \sin pt - \sin \omega t);$$

$$\dot{x} = -p \cdot \frac{\alpha^{2}\varepsilon}{1-\alpha^{2}} (-\sin pt + \alpha \sin \omega t);$$

$$\dot{y} = -p\alpha \frac{\alpha^{2}\varepsilon}{1-\alpha^{2}} (\cos pt - \cos \omega t).$$

В момент контакта: $\left(\delta - \sqrt{x^2 + y^2} = 0\right)$ дополни-

тельно определяется:

$$\theta = \arctan \frac{x}{y}; \quad \dot{\theta} = \frac{\dot{y}x - \dot{x}y}{x^2 + y^2};$$
$$r_C = \sqrt{x^2 + y^2}; \quad \dot{r}_C = \frac{x\dot{x} + y\dot{y}}{\sqrt{x^2 + y^2}}$$

При контакте ротора со статором (рис. 1, б) ротор совершает плоское движение (2): $m\ddot{x} = -kx + F\cos\theta - N\cos\theta + T\sin\theta$

 $m\ddot{y} = -ky + F\sin\theta - N\sin\theta - T\cos\theta - G$

$$J_0\ddot{\theta} = -T(r+\delta); \qquad (2)$$

$$J\frac{d\omega}{dt} = -T \cdot r; \ x = \delta \cos \theta;$$
$$y = \delta \sin \theta; \ F = \dot{\theta}^2 \cdot m \cdot \delta.$$

Учитывая, что:

$$\ddot{x} = \delta(-\cos\theta \cdot (\dot{\theta})^2 - \sin\theta \cdot \ddot{\theta});$$

$$\ddot{y} = \delta(-\sin\theta \cdot (\dot{\theta})^2 + \cos\theta \cdot \ddot{\theta}).^1$$

Из первых двух уравнений системы (2) получим:

$$\ddot{\theta} = -\frac{T}{m \cdot \delta} - \frac{g}{\delta} \cos \theta \,. \tag{3}$$

Из уравнения равновесия сил на нормаль *n-n* в точке контакта ротора и статора (рис. 1, б):

$$-N + F - k \cdot \delta - G \cdot \sin \theta = 0;$$

$$N = \dot{\theta}^2 m \delta - k \delta - G \cdot \sin \theta;$$

$$N = G \left(\frac{\delta}{g} \dot{\theta}^2 - \sin \theta \right) - m \delta \cdot p^2.$$
 (4)

Из третьего уравнения системы (2) и уравнения (3):

$$\ddot{\theta} = -\frac{r+\delta}{J_0}T;$$

$$-\frac{r+\delta}{J_0}T = -\frac{T}{m\delta} - \frac{g}{\delta}\cos\theta;$$

$$T = -\frac{J_0 \cdot m\delta}{J_0 - m\delta(r+\delta)} \cdot \frac{g}{\delta}\cos\theta,$$
(5)

где T – сила трения, необходимая для качения диска по статору.

Сила трения T может иметь значение: $0 \le T \le f \cdot N$ в зависимости от условий в точке контакта (т.*K*). Если $T \ge f \cdot N$ – контакт будет с проскальзыванием.

В общем случае качение возможно при:

$$Nf \ge \frac{J_0 \cdot m\delta}{J_0 - m\delta(r + \delta)} \cdot \frac{g}{\delta} \cos \theta \,. \tag{6}$$

В предположении: $T = T_{\text{max}} = f \cdot N$ в начальный

момент контакта из уравнений 3, 4 системы (2) и уравнения (3):

$$\frac{d\omega}{dt} = \frac{1}{J} \left(\frac{J_0}{m\delta} - (2r + \delta) \right) \cdot T + \frac{J_0 g}{J\delta} \cos \theta \,.$$

В момент контакта $t = tn; \omega_n = 314 \text{ рад/с}$.

 $\dot{\theta}_n = \dot{\theta}$, $\theta_n = \theta$ – определяются решением уравнений (1) для момента выборки зазора.

По истечении времени ударного взаимодействия ротора и статора (времени выхода на обкат):

$$t = t_k; \quad \omega_k = 0;$$

$$\int_{\omega_n}^{\omega_k} d\omega = \int_{t_n}^{t_k} Sdt; \quad \omega_k - \omega_n = S(t_k - t_n);$$

$$\tau = (\omega_\kappa - \omega_n) / S, \qquad (7)$$

где
$$S = \frac{1}{J} \left(\frac{J_0}{m\delta} - (2r+\delta) \right) \cdot T + \frac{J_0 \cdot g}{J \cdot \delta} \cos \theta;$$

 $\tau = t_k - t_n$ – время ударного взаимодействия (время выхода на обкат);

$$\kappa_t = \frac{N \cdot f}{T}$$
 – коэффициент запаса трения;
 $\kappa_G = \frac{N}{G}$ – коэффициент нагрузки на статор в

момент контакта.

В момент контакта ударный импульс определяется силой $T = f \cdot N$, силой N и временем ударного взаимодействия (τ).

Для тела, совершающего плоское движение, по теореме об изменении движения центра масс при ударе [7]:

$$m(\dot{x}_{\kappa} - \dot{x}_{n}) = \sum S_{\kappa x}^{(e)} = \int_{0}^{\tau} T_{x} d\tau + \int_{0}^{\tau} N_{x} d\tau ;$$

$$m(\dot{y}_{\kappa} - \dot{y}_{n}) = \sum S_{\kappa y}^{(e)} = \int_{0}^{\tau} T_{y} d\tau + \int_{0}^{\tau} N_{y} d\tau ;$$

$$J(\omega_{\kappa}-\omega_{n})+J_{0}(\dot{\theta}_{\kappa}-\dot{\theta}_{n})=-\int_{0}T(r+\delta)d\tau;$$

где

$$T_y = -T\cos\theta = -f \cdot N\cos\theta;$$

 $T_x = T\sin\theta = f \cdot N\sin\theta;$

¹ Уравнения (2) в момент контакта записаны для $\varepsilon = 0$ ротора.

$$N_x = -N \cdot \cos \theta;$$

$$N_y = -N \cdot \sin \theta;$$

$$\omega_n = 314 \text{ pag/ } c;$$

$$\omega_\kappa = 0,$$

• •

тогда

$$\begin{split} \dot{x}_{\kappa} - \dot{x}_{n} &= \frac{1}{m} \Biggl[\int_{0}^{\tau} f \cdot N \sin \theta \cdot d\tau - \int_{0}^{\tau} N \cos \theta \cdot d\tau \Biggr] ; \\ \dot{y}_{\kappa} - \dot{y}_{n} &= \frac{1}{m} \Biggl[-\int_{0}^{\tau} f \cdot N \cos \theta \cdot d\tau - \int_{0}^{\tau} N \sin \theta \cdot d\tau \Biggr] ; \\ \dot{\theta}_{\kappa} - \dot{\theta}_{n} &= \frac{1}{J_{0}} \Biggl[-J(\omega_{\kappa} - \omega_{H}) - \int_{0}^{\tau} T \cdot d\tau \cdot (r + \delta) \Biggr] ; \\ \dot{x}_{\kappa} - \dot{x}_{n} &= \Delta \dot{x} ; \dot{y}_{\kappa} - \dot{y}_{n} = \Delta \dot{y} ; \dot{\theta}_{\kappa} - \dot{\theta}_{n} = \Delta \dot{\theta} ; \end{split}$$

 $\Delta \dot{x}, \Delta \dot{y}, \Delta \dot{\theta}$ – изменение линейных скоростей и угловой скорости обката за время удара.

По приведённому алгоритму составлена программа расчёта для П.К., позволяющая выполнить оценку условий, возникающих после мгновенной разбалансировки ротора.

Пример: Для ротора G = 10 т, вращающегося с угловой скоростью:

$$\omega = 314$$
 рад/ с;
 $\alpha = 0,75 \div 1,25;$
 $f = 0,25 \div 0,05;$
 $r = 0,22$ м;
 $\epsilon = (0,7 \div 1,5)10^{-3}$ м;
 $\delta = 0,0025$ м

при условии контакта по диафрагменным уплотнениям получены (таблица) основные кинематические и силовые характеристики в момент контакта. Варианты с $\kappa_t < 1$ указывают на контакт с проскальзыванием.

Время движения в зазоре Δt , как и время выхода на обкат τ считаются важным качественным фактором развития нестационарных колебаний ротора, так как эти показатели будут определять время действия сил сопротивления, препятствующих развитию колебаний.

Основные результаты расчётов представлены ниже в таблице и на рис. 2, 3.

За короткий промежуток времени ударного взаимодействия ротора со статором (доли секунды) угловая скорость вращения ротора вокруг центра расточки статора возрастает более чем в 2 раза. Значения Δt , τ зависят как от величины разбалансировки ротора, так и от близости рабочей скорости к собственной частоте колебаний ротора (табл. 1, рис. 2, 3).

При больших коэффициентах трения f > 0,2 время выхода на обкат τ мало зависит от степени отстройки от резонанса.

Полученные результаты показывают возможность развития явления обката при разбалансировках более 0,1% G на радиусе 1 м и коэффициентах трения стали по стали.

Выводы

1. Время развития процесса нестационарных колебаний ротора в зазоре до соприкосновения со статором уменьшается с увеличением разбалансировки. Например, при относительно малой величине разбалансировки 0,07% G и отстройке от резонанса действие веса ротора приводит к хаотической траектории движения.

2. В момент соприкосновения ротора со статором угловая скорость вращения ротора вокруг центра расточки статора сопоставима с угловой скоростью вращения ротора.

3. В доли секунды за время ударного взаимодействия ротора и статора (до начала обката) угловая скорость движения ротора вокруг центра расточки статора возрастает более чем в 2 раза.

4. Время выхода на обкат после соприкосновения ротора и статора уменьшается с увеличением коэффициента трения скольжения в месте контакта,

аблица 1 вия		Угловая скорость	в конце :	удара, Ө	рад/с	712	606	643 711	713	606	710.8		658,5	702,1	548,6	459,6	657,9	549,8				0072	_		X,MM	_				
Т модейст		•;	<u>م</u> ر		M/C	3,6 2 <u>-</u> -	5,74	-, -, 2, 2, 4	1,9	19,8	-6.7		-3,56	-1,86	-4,4	6,86	-6,9	-2,47			/	Ĵ.	\langle		- 0					
го взаи		:	\ Tr		M/C	-6,5	1,14	0,68 2.7	3,4	4,4	5.4	```	1,66	3,35	-4,2	7,26	3,05	-2,5		,MM			, +		-	4	, ,	,)	α=1,25	
а время ударнс		Время ударного	взаимодействия,	ч	0	0,217	0,025	0,17 0.03	0,114	0,086	0.061	,	0,056	0,028	0,237	0,0885	0,108	0,137	1eM	~			· · · · · · · · · · · · · · · · · · ·	· · ·	-7	~	t=0,0189	0		провки є:
статором и з	жесткий <pre></pre>	Время движения	B 3a3ope,	Δt	o	7,95	0,073	0.024 0.012	7,95	0,073	0.012	, ,	0,0236	0,0117	0,0189	0,0072	0,0236	0,0189	с проскальзывани			/			2 X,MM	t=0,02363	_			ной разбалансі r = 220 мм
с контакта со	c doroq)	циенты	Нагрузка,	κ_G	ļ	3,47	23,95	2,07 14.4	3,47	23,95	+ 14.4	- 6	7,13	14,01	2,6	c,11	7,13 ←	2,6 ←	← контакт	ĕ		v		-	ر	<u> </u>	-2	<u>_</u>	x=1,025	CITE MITHOBEHI $\delta = 2,5$ MM; <i>i</i>
ра в момент		Коэффи	Запас	трения, κ_T	I	4,84	3,92	2,9 3.03	1,62	1,31	0,96 1.01	ибкий α>1)	9,97	2,61	3,64	2,18	$3,32 \\ 0,87$	$1,21 \\ 0,728$, м	t=0,0177		```` \	\	-7 - -7		8 V	/	0	3330pe δ IIO s = 0, 15% G;
зактеристик движения рото	контакта; $\omega = 314 \text{ рад/с}$	Угловая скорость, Ө́			рад/с	399,6	291,8	328,5 396.6	399,6	291,8	328,6 396.7	I doroq)	343,9	383,2	236	143,6	343,9 383,2	236 143,6			/	/			2 X,MM	t=0,02373				масс ротора в ———– -
		Угол контакта, θ			рад	1,465	1,351	1,465 0.897	-1,083	1,351	1,465 0.897		1,465	0,474	1,465	0,735	0,1465 -0,5307	0,1465 -0,735		3⊸Ү,мм		7			- F		-2-	<u>ر</u>	$\alpha = 0.975$	кения центра – $\varepsilon = 0.07\% G$
атических хај	220 мм – радиус	Мгновенная	разоаланси- ровка, Е		% or G	0,07	0,15	0,07 0.15	0,07	0,15	0,07 0.15		0,07	0,15	0,07	0,15	0,07 0,15	0,07 0,15				t=0,01224		` [-2		8 V			ектории дви л – — — — –
новных кинем	I = I		$\alpha = 0/p$		I	0,75		0,975	0,75		0,975	-	1,025		1,25		1,025	1,25		MM	/	/	\sim		1 7,MM			\		Рис. 2. Тра
ультаты расчёта ос		Коэффициент трения, <i>f</i>			1	0,15				0,05			0,15			0.05		1		ı,×	5	(3 -2 -1		8)	$\alpha = 0,75$	
Pea		ء ١	3a3op,ò		MM		5,2																							

приближением к резонансу, увеличением разбалансировки и имеет порядок десятых и сотых долей секунды, что составляет ~(5 - 0,5) оборотов ротора. При больших коэффициентах трения f > 0,2 время выхода на обкат τ мало зависит от степени отстройки от резонанса.

Рис. 3. Зависимость времени выхода на обкат τ от коэффициента трения скольжения *f*

Литература

 Коррозионная усталость рабочих лопаток / М.А. Вирченко, Е.Б. Левченко, Б.А. Аркадьев и др.// Энергетика. – 1997. – № 6. – С. 32-36.

2. Щегляев А. В., Костюк А.Г. Действие внезапной разбалансировки на ротор турбогенератора // Теплоэнергетика. – 1969. – № 8. – С. 5-10. 3. Шатохин В.Ф. Циммерман С.Д. Разработка системы предотвращения катастроф агрегатов. Часть 1. Анализ катастрофических аварий и постановка задачи // Авиационно-космическая техника и технологии. – 2005. – 10/26. – С. 19-31.

4. Шатохин В.Ф. Некоторые предложения по предотвращению катастроф, связанных с разрушением турбоагрегатов // Вестник машиностроения. – 2007. – № 6. – С. 25-31.

 Шатохин В.Ф. Циммерман С.Д. Колебания ротора турбоагрегата при нестационарном кинематическом воздействии. Метод расчёта // Авиационнокосмическая техника и технологии. – 2006. – 8/34. – С. 57-68.

 Артоболевский И.И., Костицин В.Т., Раевский Н.П. Об одном состоянии вала, вращающегося в подшипнике без смазки с зазором // Изв. Академии наук СССР, отделение технических наук. – 1949. – № 2. – С. 168-173.

 Курс теоретической механики / В.В. Добронравов и др. – М.: Высш. шк., 1966. – 624 с.

Поступила в редакцию 6. 05.2008

Рецензент: д-р техн. наук, проф. Ю.Л. Лукашенко, Калужский филиал Московского государственного технического университета им. Н.Э. Баумана, Калуга, Россия.