УДК 62-755

А.Н. ГОРБЕНКО

Керченский государственный морской технологический университет, Украина

ИЗМЕНЕНИЕ ГРАНИЦЫ УСТОЙЧИВОСТИ АВТОБАЛАНСИРОВКИ РОТОРА ШАРАМИ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ

В работе изучается взаимосвязь между наибольшей критической скоростью вращения роторной системы с автобалансиром и текущим дисбалансом ротора, изменяющимся во время эксплуатации. Установлены закономерности и диапазоны возможных значений геометрических параметров, характеризующих автобалансирующие положения шаров. Показано, что при неизменном дисбалансе граница устойчивости может быть различной в зависимости от геометрии расположения шаров. Кроме того, возможно аномальное повышение остаточной вибрации и снижение эффективности автобалансировки при относительно невысоком дисбалансе ротора.

ротор, вибрация, автобалансир, дисбаланс, устойчивость автобалансироки, граница устойчивости

1. Постановка проблемы. Анализ существующих публикаций. Цель работы

Для снижения вибрации роторных машин находят применение автобалансирующие устройства (АБУ) пассивного типа (см. например [1 – 5]). Одним из их достоинств является возможность автоматического устранения дисбаланса ротора, изменяющегося в процессе эксплуатации. Согласно инженерной теории АБУ [1, 2] для однодискового ротора в зоне устойчивости реализуется идеальная автобалансировка, при которой компенсирующие массы (КМ) – шары или маятники – занимают неподвижные положения относительно диска и поперечные колебания ротора отсутствуют. При этом получается, что эффективность автобалансировки и граница ее устойчивости не зависят от величины текущего дисбаланса ротора (в пределах емкости АБУ).

В действительности в режиме автобалансировки всегда имеется некоторая ненулевая остаточная вибрация ротора, уровень которой в существенной мере зависит от текущего дисбаланса [3, 4]. Известно, что в процессе эксплуатации происходит постоянный рост неуравновешенности ротора [5]. Это приводит к постепенному увеличению остаточной вибрации ротора и нижней границы устойчивости (т.е. наибольшей критической скорости вращения системы «ротор – АБУ»).

Практически важно при проектировании автобалансира выбрать такие его параметры, при которых обеспечивается достаточно низкий уровень вибрации машины в течение заданного периода эксплуатации. Косвенным показателем вибрации ротора с АБУ может служить запас устойчивости автобалансировки по частоте вращения. В связи с этим представляется актуальным выявление взаимосвязи между наибольшей критической скоростью вращения роторной системы и текущим дисбалансом. Анализ литературных источников показывает, что данный вопрос лишь частично изучался в работах [4, 3].

Цель работы – анализ характера изменения границы устойчивости автобалансировки в процессе эксплуатационного роста дисбаланса однодискового ротора с многомассовым АБУ.

2. Физическая модель. Безразмерные параметры

Рассмотрим однодисковый ротор на двух изотропных опорах. Статически неуравновешенный диск ротора расположен посередине между опорами и совершает плоское движение. В плоскости диска расположен автобалансир с компенсирующими массами в виде шариков или маятников (рис. 1). Непосредственный контакт между КМ отсутствует.

Рис. 1. Механическая система «ротор –автобалансир»

Данная механическая система характеризуется следующими физическими параметрами: ш - угловая скорость вращения ротора, рад/с; М – масса диска, кг; r – эксцентриситет, м; K – жесткость вала и его опор, приведенная к центру диска, Η/м; β – коэффициент внешнего вязкого демпфирования ротора, c^{-1} ; *p* – критическая скорость вращения ротора без АБУ, рад/с; х, у – текущие координаты геометрического центра диска, м; *m*, *n* – масса одного шара (кг) и их количество; *R* – радиус окружности движения центров масс шаров в АБУ, м; β_0 – коэффициент внутреннего вязкого сопротивления движению шаров в АБУ, c^{-1} ; α_i – постоянные угловые положения шаров относительно диска в режиме автобалансировки, рад; ϕ_i – текущая угловая координата *j*-го шара относительно оси x, рад.

В режиме автобалансировки шары занимают в АБУ положения, при которых выполняются соотношения:

$$\sum_{j=1}^{n} \cos \alpha_{j} = -\frac{Mr}{mR} = -\frac{n}{E}; \quad \sum_{j=1}^{n} \sin \alpha_{j} = 0, \quad (1)$$

где $E = \frac{nmR}{Mr} = \frac{n\mu\rho}{1-n\mu}$ – балансировочная ёмкостью

автобалансира.

Анализ динамики системы может быть сведен к исследованию уравнений, зависящих от следующих безразмерных параметров [3, 4]:

$$\Omega = \frac{\omega}{p}; B = \frac{\beta}{p}; \mu = \frac{m}{M + nm}; \rho = \frac{r}{R}; B_0 = \frac{\beta_0}{p};$$

$$D = \frac{1}{n^2} \left[\left(\sum_{j=1}^n \cos 2\alpha_j \right)^2 + \left(\sum_{j=1}^n \sin 2\alpha_j \right)^2 \right], \quad (2)$$

где Ω – безразмерная угловая скорость вращения;

B, *B*₀ – безразмерные коэффициенты внешнего и внутреннего вязкого демпфирования ротора и АБУ;

ρ – относительный радиус окружности движения
 центров масс шаров в АБУ;

D – параметр расположения шаров в режиме автобалансировки.

Характерные диапазоны значений параметров [3, 4]: B = 0,01...0,5; $n\mu = 0,001...0,05$; $B_0 = 0,01...0,5$.

Критические скорости механической системы определяются характеристическим уравнением вида [3]:

 $a_0 = 1 - n\mu + 0,25n^2\mu^2 (1 - D);$

$$\sum_{k=0}^{8} a_k \Delta^{8-k} = 0, \qquad (3)$$

где

$$a_{1} = (2 - n\mu)(B + B_{0});$$

$$a_{2} = (2 - n\mu)(1 + \Omega^{2} + BB_{0}) + (B + B_{0})^{2} + +n^{2}\mu^{2}\Omega^{2}(1 - D);$$

$$a_{3} = 2(B + 2B_{0})(1 + \Omega^{2}) + 2BB_{0}(B + B_{0}) - -n\mu(B_{0}(1 + \Omega^{2}) - 2B\Omega^{2});$$

$$a_{4} = (\Omega^{2} - 1)^{2} + n\mu\Omega^{2}(6 + \Omega^{2} + 2BB_{0}) + +2B_{0}(2B + B_{0})(1 + \Omega^{2}) + B^{2}(B_{0}^{2} + \Omega^{2}) + +1,5n^{2}\mu^{2}\Omega^{4}(1 - D);$$

$$a_{5} = 2B_{0}(\Omega^{2} - 1)^{2} + 2BB_{0}[B_{0} + (B + B_{0})\Omega^{2}] + +n\mu\Omega^{2}[3B\Omega^{2} + B_{0}(6 + \Omega^{2})];$$

$$a_{6} = n\mu\Omega^{4}(\Omega^{2} - 1 + 3BB_{0}) + n^{2}\mu^{2}\Omega^{6}(1 - D) + +B_{0}^{2}[(\Omega^{2} - 1)^{2} + B^{2}\Omega^{2}];$$

$$a_{7} = n\muB_{0}\Omega^{4}(\Omega^{2} - 1); a_{8} = 0,25n^{2}\mu^{2}\Omega^{8}(1 - D)$$

 $\Delta-$ собственное число механической системы.

;

При $\Omega > 1$ все коэффициенты $a_k > 0$.

При типичных значениях параметров область устойчивости автобалансировочного режима ограничивается снизу наибольшей критической скоростью роторной системы Ω_K , которая неявным образом определяется уравнением (3). Как видим из (3) граница устойчивости зависит от дисбаланса через геометрический параметр D, свойства которого в общем случае неоднозначны и недостаточно изучены в существующих работах по автобалансирам.

3. Геометрические особенности расположения КМ в АБУ

В автобалансирующем режиме КМ в АБУ занимают положения, при которых общий центр масс КМ и диска ротора расположен в центре диска О. Параметр D зависит от α_j , которые в свою очередь определяются дисбалансом Mr. Изменение дисбаланса приводит к изменению величины D, а также емкости E.

В случае n = 2 расположения шаров и значение параметра D однозначны. Из (1), (2) для этого случая вытекают выражения:

$$\alpha_1 = -\alpha_2 = \arccos\left(-\frac{1}{E}\right); \quad D = \left(\frac{2}{E^2} - 1\right)^2.$$
 (4)

В случае n = 3 ситуация неоднозначна. Вопервых, существует множество вариантов размещения шариков в АБУ. Результат расположения шариков можно трактовать как произвольное размещение (n - 2) шариков (в пределах возможного) и однозначное расположение оставшихся двух шариков согласно равенствам (1).

Во-вторых, параметр D не может быть однознач-

но выражен через суммы
$$\sum_{j=1}^n \cos \alpha_j$$
 и $\sum_{j=1}^n \sin \alpha_j$.

Вследствие этого величина D может принимать произвольное значение в некотором интервале $D_{\min} \le D \le D_{\max}$. В известных работах для параметра D указывается лишь общий диапазон его возможных значений: D = 0...1. Однако более внимательное изучение показывает, что при заданном значении дисбаланса (а значит и емкости) величина Dизменяется в более узком диапазоне, т.е. $D_{\min} \ge 0$ и $D_{\max} \le 1$.

В частности для случая n = 3 на основе (1), (2) могут быть получены следующие выражения:

$$D_{\min} = \frac{1}{E^2} \left(\frac{n}{E} - 2 \right)^2;$$

$$D_{\max} = \begin{cases} \frac{1}{2n^2} \left(27 - 10 \frac{n^2}{E^2} + \frac{n^4}{E^4} \right), 1 \le E < 3; \quad (4) \\ \frac{1}{E^2} \left(\frac{n}{E} + 2 \right)^2, E \ge 3. \end{cases}$$

Из рис. 2 видны основные особенности зависимости параметра D от емкости, которая изменяется обратно пропорционально дисбалансу. При E = 1 в любом случае D = 1. В случае n = 2 зависимость D(E) однозначна. При n = 3 (и более) всегда имеется некоторый диапазон возможных значений параметра D. Причем при Е, близких к единице, этот диапазон весьма узкий.

Рис. 2. Зависимость параметра D от емкости E: 1 - D(E) при n = 2; 2, $3 - D_{\min}(E)$ и $D_{\max}(E)$ при n = 3

4. Изменение границы устойчивости

В процессе эксплуатации происходит постепенная разбалансировка ротора, выражающаяся в увеличении эксцентриситета r. Это приводит к снижению запаса устойчивости автобалансировки и изменению уровня остаточной вибрации. Граница устойчивости Ω_{K} , как видно из (3), является функцией параметра D, который в свою очередь зависит от дисбаланса. Зависимость $\Omega_K(D)$ носит нелинейный характер (рис. 3) [3].

Указанные выше особенности приводят к своеобразному изменению границы устойчивости, что видно из рисунка 4. Расчеты проводились на основе уравнения (3) при $\text{Re}(\Delta) = 0$. При этом были приняты следующие исходные данные: B = 0,2; $\mu = 0,01$; $B_0 = 0,05$; начальная емкость АБУ $E_{\mu ay} = 5$.

Рис. 3. Зависимость границы устойчивости Ω_K от параметра D: 1, 2 – при n = 2 и n = 3

Рис. 4. Зависимость границы устойчивости Ω_K (a) и емкости автобалансира (б) от эксцентриситета: 1 - n = 2;2, 3 - n = 3 при D_{\min} и D_{\max}

Заключение

В работе установлены следующие основные особенности изменения границы устойчивости автобалансировки в процессе эксплуатационного роста дисбаланса ротора.

1. Имеется качественное различие в поведении двух- и многомассовых АБУ. При n = 2 каждому значению дисбаланса соответствует одно значение Ω_{K} . При $n \ge 3$ каждому значению дисбаланса соответствует определенный интервал Ω_{K} .

2. В процессе роста дисбаланса возможно явление аномального повышения Ω_K с последующим ее снижением. Данная особенность проявляется при *D* близком к нулю.

Полученные результаты будут полезны для дальнейших исследований и на производстве.

Литература

 Автоматическая балансировка роторов машин / А.А. Гусаров, В.И. Сусанин, Л.Н. Шаталов, Б.М. Грушин. – М.: Наука, 1979. – 151 с.

 Нестеренко В.П. Автоматическая балансировка роторов приборов и машин со многими степенями свободы. – Томск: Томский ун-т, 1985. – 84 с.

 Горбенко А.Н. Об устойчивости автобалансировки ротора с помощью шариков // Проблемы прочности – 2003. – № 3 (363). – С. 120-129.

 Филимонихин Г.Б. Зрівноваження і виброзахист роторів автобалансирами з твердими коригувальними вантажами. – Кіровоград: КНТУ, 2004. – 352 с.

Самаров Н.Г. Автоматическое балансировочное устройство как конструктивный узел вращающихся механизмов // Автоматизация и современные технологии. – 1995. – № 7. – С. 20-22.

Поступила в редакцию 30.05.2008

Рецензент: д-р техн. наук, проф. А.А. Кислый, Керченский государственный морской технологический университет, Керчь.