
Информационные технологии 117

UDC 621.16

P. AXMAN, T. KERLIN, D. SVAČINA, V. OPLUŠTIL, J. TOMAN

UNIS, a. s., Department of Mechatronic Systems, Czech Republic

MODERN METHODS OF FADEC DESIGN FOR AIRCRAFT ENGINES
AND CERTIFICATION ASPECTS

An article describes the motivation for use of automatic code generators for the development of critical control
applications in the aerospace industry. A V-cycle model based design is introduced and its advantages and de-
velopment practices that leads from design of a MATLAB/Simulink [1] models to a real target application are
depicted. Attention is also paid to FAA/EASA certification authorities requirements ([5], [6], [7]) with respect
to a certification process of any newly designed aviation equipment. These practices are being used during the
entire development cycle of an aircraft engine subsystems for small civil aircraft (category FAR 23 / CS-23).

Key words: aircraft, engine, fadec, certification, modelling, V-cycle.

Introduction

Software (SW) and hardware (HW) that are devel-

oped for critical application and have to meet a lot of
standards that ensure their quality ([2], [3]). The certifi-
cation level depends on the target application. Some
experiences with certification for embedded systems in
aviation are described in [4]. Generally, it can be said,
that the software and hardware development and certifi-
cation is time and cost consumable process. Main effort
is to reduce development time and cost and ensure
shorter time to market. On this account it is necessary to
find new methods and approaches for SW and HW de-
veloping.

This paper describes certification process and way
how to reduce cost connected with the equipment certi-
fication; modern approaches for development of control
systems using V-cycle and example of a Full Authority
Digital Engine Control (FADEC) design cycle.

1 Certification Aspects

The main reason for using the Rapid Control Pro-

totyping (RCP) and development tools during the whole
development cycle is to reduce time and costs of the
development and certification process. We have ana-
lyzed COTS based SW and HW development tools
which are fully or partially qualified for use in the aero-
space industry, or they are in progress to be qualified in
the near future. We have also performed an internal
study which shown that COTS development tools
should shorten the development cycle very effectively.

There are many qualified SW tools offered by
many vendors. These SW tools cover airborne certifica-
tion requirements and comply with technical recom-
mendations and standards for safety-critical applica-

tions. Available methodologies introduce very effective
processes during the SW and HW development cycle.

The best way to save resources available for the
project is using integrated development tools. It is al-
most impossible to use only one tool for all activities
during the project development, but it is likely to use
such tools which can cooperate among each other, as is
shown in fig. 1.

Fig. 1. Cooperation among the development tools

 during the certification process

An example of a commercial tool chain is shown

in Figure 3. These development tools can be fully stan-
dardized for creation of higher quality and more reliable
software, e.g. C, C++, Ada, Java compilators and auto-
matic code generators, which are usually a part of Inte-
grated Development Environment (IDE), such as
SCADE, MATLAB/Simulink, NI LabView, etc. Ability
to reuse certified SW parts and artifacts within the soft-
ware modification process for use in another application
(especially RTOS like LynxOS-178, PikeOS, Integrity-
178B, etc., see more in [2], [3]) leads to cost reduction
and time effective development because SW verification

 P. Axman, T. Kerlin, D. Svačina, V. Opluštil, J. Toman
АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2009, № 7 (64)

Информационные технологии 118

and code tests are then less time consuming processes.
Static and dynamic code testing tools are available com-
mercially (CANTATA++, CodeTest, VectroCast, etc.).

Fig. 2. Model of SW development process
and its impact on SW development tools application

A certification by FAA/EASA agencies is required

for both simple (based on CPU and simple electronic
components) and complex hardware architectures
(based on PLD, FPGA, ASIC micro-coded technology).
Using simple hardware architecture with a standard core
CPU (Freescale, ARM, TI, etc.) could simplify the certi-
fication process very dramatically because of proven
architecture and reference projects that have passed the
certification process formerly. The same situation is
with COTS bus technologies - these are being used in
the automotive industry for a long time and their safety,
performance and reliability has been sufficiently proven
[6], [7], [8].

Thus, wide enforcement of COTS components and
data buses into the aerospace sector is only a matter of
time.

1.1 RTCA/DO-178B and RTCA/DO-254 standards

The development of every equipment for use in

aerospace has to be approved by FAA or EASA certifi-
cation agencies. The two major standards in the aero-
space industry that describe all the requirements and
recommendations for successful certification are the
RTCA/DO-178B – Software Considerations in Airborne
Systems and Equipment Certification [4] and
RTCA/DO-254 – Design Assurance Guidance for Air-

borne Electronic Hardware [5]. These standards expect
from developers to describe the whole development
cycle in order to assure reliability, data integrity, per-
formance, proper development cycle, system configura-
tion management and continuous airworthiness. As a
resulting benefit there is identification of bottlenecks
and prevention of fault states.

On the other hand, the drawback of these two stan-
dards is a necessity to elaborate a comprehensive
amount of documentation, both for the SW and HW
development.

List of the SW development documentation in ac-
cordance with DO-178B is given below:

 Plan for Software Aspects of Certification
(PSAC)

 Software Development Plan (SDP)
 Software Verification Plan (SVP)
 Software Configuration Management Plan

(SCMP)
 Software Quality Assurance Plan (SQAP)
 Software Requirements Standards (SRS)
 Software Design Standards (SDS)
 Software Code Standards (SCS)
 Software Requirements Data (SRD)
 Software Design Description (SDD)
 Software Verification Cases and Procedures

(SVCP)
 Software Life Cycle Environment Configura-

tion Index (SECI)
 Software Configuration Index (SCI)
 Software Accomplishment Summary (SAS)

The minimum software life cycle data to be sub-

mitted to a certification authority is:
 Plan for Software Aspects of Certification

(PSAC)
 Software Configuration Index (SCI)
 Software Accomplishment Summary (SAS)

The regulation concerning retrieval and approval

of SW life cycle data related to the type design applies
to:

 Software Requirements Data
 Software Design Description
 Source Code
 Executable Object Code
 Software Configuration Index
 Software Accomplishment Summary

List of HW development documentation in accor-

dance with DO-254:
 Plan for Hardware Aspects of Certification

(PHAC)
 Hardware Development Plan (HDP)
 Hardware Verification Plan (HVP)
 Hardware Configuration Management Plan

(HCMP)

Информационные технологии 119

 Hardware Process Assurance Plan (HPAP)
 Hardware Requirements Standards (HRS)
 Hardware Requirements (HR)
 Hardware Detailed Design Data: Top ‚ Level

Drawings (TLD)
 Hardware Detailed Design Data: Assembly

Drawings (AD)
 Hardware Detailed Design Data: Installation

Control Drawings (ICD)
 Hardware Traceability Data (HTD)
 Hardware Acceptance Test Criteria (HATC)
 Hardware Configuration Management Re-

cords (HCMR)
 Hardware Process Assurance Records

(HPAR)
 Hardware Accomplishment Summary (HAS)

The minimum hardware life cycle data to be sub-

mitted to a certification authority is:
 Plan for Hardware Aspects of Certification

(PHAC)
 Hardware Verification Plan (HVP)
 Hardware Detailed Design Data: Top ‚ Level

Drawings (TLD)
 Hardware Accomplishment Summary (HAS)

As is shown above, the list of required documenta-

tion is really comprehensive and it is – together with
strict coding practices, test sets and system verification
– the most disincentive issue during the development
cycle of any new equipment/technology for the aero-
space industry, because it requires strong experience,
deep know-how and well managed certification prac-
tices.

2 Development of Control Systems

The development procedures and practices in the

aerospace industry have originated on those used in the
industry and automotive sector. A process that describes
steps and linkages between individual development
stages of the project has been established over the time.
This process is often called a ”V-cycle”.

2.1 V–cycle

The V-Cycle is a graphical construct used to com-

municate a model-based software development method-
ology. The advantages of V–cycle lies in its inherently
intuitive nature, easy reuse of model and portability
across multiple platforms. Model-based control design
is a time saving and cost-effective approach, allowing
engineers to work with a single model in an integrated
software environment. The graphical representation of
the V-cycle is shown in Fig. 3.

The complete design consists of particular steps,
such as: control design, rapid control prototyping, target

implementation, hardware-in-the-loop testing and cali-
bration.

Within the function design stage, the modelling
and computer simulations of closed-loop system have
been done. A mathematical model of both the controlled
system (so called plant model) and a controller (ECU)
are necessary at this point. The important thing is that
the control algorithms are developed as symbolic mod-
els, not in a C-code.

When the synthesis of the ECU is finished and the
results of simulations are well, the engineers start with
verification of ECU’s algorithms in ”real-time” on a
real-time hardware. This stage is called a rapid control
prototyping (RCP).

Fig. 3. The V-cycle development process [1]

RCP is a process that lets the engineers quickly

test and iterate control strategies on a real-time com-
puter with either real or modelled system-under-control.
The computer model is used in case where inadequate
action of ECU could cause a damage of equipment or
endanger lives. The biggest advantage of using the inte-
grated software environment for modelling, simulation
and also function prototyping is that the control engi-
neer does not have to be a C-code expert nor have
enough skills to port the C-code to a real-time target. By
virtue of an automated build process the RCP systems
do this work for them.

In the next stage, the target code for the ECU is
automatically generated by a special software, which
reads math model files and generates a compile-able
code that replicates the behaviour of the model. This
dramatically reduces the implementation time and, in
addition, the engineers have systematic consistency be-
tween a specification and production stage. Moreover,
improvements to the ECU could be easily added, even
after implementation of an initial code. The time for
hardware-in-the-loop testing is coming on once the
ECU is programmed.

Hardware-in-the-loop is a form of a real-time
simulation that differs from a pure real-time simulation
by addition of a ”real” component into the loop. This
component might be the ECU or the real system-under-
control. The current industry definition of the hardware-

Информационные технологии 120

in-the-loop system is that the plant is simulated and the
ECU is real. The model of the plant (and the simulation
HW also) is the same like in the stage of RCP.

The next step is a calibration, which is a process of
optimizing or tuning real control algorithms to get the
desired response from the system. A calibration tool is a
combination of a hardware interface and a software ap-
plication that enables the engineer to access and change
the ”calibration variables” in the ECU. Typical compo-
nents of control algorithms which need calibration are
look-up tables, gains and constants. The structure of the
control algorithm is not changed during the calibration
process.

2.2 Implementation of the V-cycle

The typical V-cycle development process is based

on a software development tools such as MATLAB and
dSPACE. These tools provide a seamless transition
from a block diagram to a real-time and target hardware.

Particularly, for function design is mostly used
MATLAB, Simulink, Stateflow and other toolboxes for
MATLAB. These tools together comprise a complex
software package that forms the core environment for
mathematical computation, analysis, visualization, algo-
rithm development, etc. MATLAB is a high-level tech-
nical computing language and interactive environment
that enables performing computationally intensive tasks
such as algorithm development, data visualization, data
analysis, and numeric computation. Simulink provides
an interactive graphical environment and a customizable
set of block libraries that let the user to design, simulate,
implement and test a variety of time-varying systems.
With Stateflow, you can integrate state diagrams into
Simulink models.

During RCP stage the Real-Time Workshop
(RTW) and Stateflow Coder (SC) automatically gener-
ate a C code from Simulink block diagrams and
Stateflow systems. And here comes into play a dSPACE
Real-Time Interface (RTI) which is a link between a
dSPACE hardware and the development software from
Mathworks. RTW/SC generates the model code, while
RTI provides blocks that implement the I/O capabilities
of dSPACE systems in Simulink models. Then the real-
time model is compiled, downloaded and started auto-
matically on the real-time hardware. The program can
now be controlled and instrumented by the GUI applica-
tion – ControlDesk. This is referred to as an experiment
control.

The system-under-control could be also simulated
on a real time hardware, especially in case of very com-
plicated systems, such as e.g. engines. Many different
types of HW simulators that cover all the different re-
quirements (such as computational power, I/O interface,
data bus systems, etc.) are provided with the simulations

tools. The generated code could be optimized for fixed-
or floating-point operations, in accordance to a certain
processors. Versatile code configuration options ensure
that the produced code copes with all the processor con-
straints.

Hardware-in-the-loop stage is closely connected
with the next stage – calibration.

3 FADEC Development Cycle

FADEC is the most important control authority on

the aircraft. The new and modern approach for design-
ing of the engine control unit brings:

 Shorter developing time,
 Reducing time for code testing,
 Reducing cost for prototypes manufacturing,
 Higher quality of the application code,
 Effective support of certification, etc.

The design cycle of the FADEC will be described

on the Complex Power-plant Control System (CP-CS) for
small aircraft that is designed in a frame of the project
CESAR. Power control system configuration for small
aircraft is shown in Fig. 4, its block diagram is shown in
Fig. 6. The power of the jet turbine is control by the dual
channel FADEC that cooperates with Fuel Control Elec-
trical Interface Device (FCEID) and Propeller Control
Electrical Interface Device (PCEID). The FADEC can be
back-upped by the manual control system.

Fig. 4. CP-CS system configuration for small aircraft

Generally the FADEC model based development

consists of the following steps:
 Engine and control system requirements and

their decomposition
 Mathematical modelling
 Model integration and simulation (Model in

the loop - MIL)
 Automatic code generation and verification

Информационные технологии 121

[8]
 Software in the loop (SIL) testing
 Hardware in the loop (HIL) testing
 Target platform implementation (Processor in

the loop - PIL)
The graphical relation among particular steps of

model based design is shown in Fig. 5.

Mathematical
model

Simulation

Code
generation

& validation

Software
in the loop

Hardware
in the loop

Target
implementation

INPUT

OUTPUT

En
gi

ne
 an

d
co

nt
ro

l s
ys

te
m

re

qu
ire

m
en

ts
 a

nd
 th

ei
r

de
co

m
po

si
tio

n

Fig. 5. FADEC development cycle

3.1 Mathematical modelling

A model formulation of controlled system is an es-
sential part during the stage of its control algorithm de-
sign. The model is used for examination and prediction
of the behaviour of the real system. Real system could
be very expensive.

A model of the system is based on the mathemati-
cal description. In engineering disciplines the mathe-
matical model is usually described by a set of algebraic,
differential equations, the transfer functions or the state
matrixes.

These relations are mostly derived either by a
mathematic-physical analysis of the system’s phenome-
non or by an experimental examination of the real sys-
tem. Within the modelling of very complicated systems
both approaches are combined. The aim is to get as pre-
cise model as possible, but also as simple as possible.
These two requests go unfortunately against each other
– the more precise model is more complicated.

The CP-CS model is very complex and highly
non-linear system. The physical phenomenon involved
to cover domains such as solid and fluid mechanics,
thermodynamics and electromagnetism.

All the model parts are based on the mathematical
description of the each part, provided by their designers.

3.2 Model integration and simulation

The simulation is a way, how to verify the behav-
iour of a control system that includes its environment
without real hardware.

The models were created in MATLAB / Simulink
that is a comprehensive software package that form the
core environment for mathematical computation, analy-
sis, visualization, algorithm development, model-based
design, etc. The schematic drawing implementation of
the real hardware and its mathematical models to the
Simulink is shown in Fig. 7.

Fig. 7. Mathematical model implementation

to the simulation software (Simulink)

GAS
GENERATOR

FREE
TURBINE

+
GEARBOX

PROPELLER

INTERNATIONAL STANDARD
ATMOSPHERE

PCEID

FCEID

FADEC

`

VTPE

system
under
control

FADEC

CONTROL
INTERFACE

PLA

I R

I 20

G P

measured
parameters

n P
p 1 , T 1 , v

h, v, T

 FT

P FT

P P P P

 FT
F P

n P

n GG

n GG

FCEID – Fuel Control Electrical
Interface Device

FP – Propeller thrust
GP – Fuel flow
h – Altitude
I20 – Control current of FCEID
IR – Control current of PCEID
nGG – Gas generator speed
nP – Propeller speed
PFT – Power transmitted from gas

generator to free turbine
PCEID – Propeller Control Electrical

Interface Device
PLA – Power Lever Angle
PP – Power of propeller
p1 – Air total inlet pressure
T – Ambient temperature
T1 – Air total inlet temperature
VTPE – Virtual Turbo Prop Engine
v – Air speed
 – Propeller pitch
 – Density
FT – Free turbine Angular speed

Fig. 6. Block diagram of VTPE and CP-CS architecture

Информационные технологии 122

The structure of the VTPE model is based on split-
ting of the whole engine into two basic parts, which can
be solved separately. These main parts are:
gas-generator (inlet, compressor, combustor and tur-
bine) and power turbine with gearbox and propeller to-
gether. There is only thermodynamic power linkage
between these two parts, the only hand over variable is
the power transmitted from gas-generator to free turbine
PFT. Due to this fact the complexity of model is mark-
edly decreased. The MATLAB / Simulink representa-
tion of the VTPE that is depicted in picture Fig. 6 is
shown in Fig. 8. The VTPE model is precise enough to
for examination of its behaviour during flight, for dif-
ferent aircraft speeds, heights, power extractions and
outside conditions. The start of the engine, reverse
mode, taxiing and feathering are not possible to simu-
late.

Fig. 8. Simulink diagram of VTPE
and CP-CS architecture

All necessary climatic variables are computed on

the basis of International Standard Atmosphere model
(ISA). The input blocs of the ISA model could be set to
a constant or to any time-dependent curve (e.g. typical
flight profile could be simulated).

Propeller Speed Control

This part of FADEC must keep propeller speed at

constant speed throughout the whole range of inputs
(e.g. for changing value of power transmitted from gas-
generator to free turbine and for all possible climatic
conditions).

System under control is ‘propeller governor’ +
‘free turbine + propeller’ and control signal is control
current of ‘propeller governor’ I20. The control structure
is cascade, with inner feedback loop and outer nP
feedback loop. Instead of measuring directly, the
value of u is measured, which is directly proportional
to.

The overall architecture of this structure is shown
in Fig. 9.

v _ ms
v _ ms

rho
rho

n _ P _ req
n _ P _ req

n _ P
n _ P

free turbine
+

propeller

phi

rho

v

P _ FT

n _ P

F _ P

P _ P

M _ FT P _ FT [kW]
400 e 3

PCEID
propeller
governor
(ver . 1 . 0)

n _ P

I 20

phi

u
GT n _ P n _ P

GT P _ P P _ P

GT M _ FT M _ FT

GT F _ P F _ P

FADEC
speed control

n _ P
n _ P *
u

I 20

P _ FT

Fig. 9. Simulink scheme of the propeller speed control

Requested propeller speed is set with respect to

Propeller Speed Switch, with which pilot can set one of
the three different propeller states (speeds). This value
is restricted by a rate limiter, which doesn’t allow too
steep changes of this value. The difference between
requested and actual value of nP is processed by and
PI+AW (PI + antiwind-up) controller, whose output is
requested value of. The error signal of is processed
with another (PI2) controller, which produces control
current I20. It supplies an electromagnetic actuator
which drives a pilot valve of propeller governor that
changes an amount of oil flowing to or from propeller
head resulting in change of and change of nP too. The
PI+AW and PI2 were set in respect of achieving as good
response to control signal as possible.

Power Control

Power control should ensure proper power of the

engine, particularly proper power on the free-turbine
shaft PFT, with respect to Power Lever and throughout
all possible climatic conditions. It also checks important
parameters and doesn’t allow them to overcome secure
values. System under control consists of ‘fuel governor’
with ‘gas-generator’, control signal is a control current
of ‘fuel governor’ Ir. The control structure comprises
nGG feedback loop with PI controller and some blocs
providing limitations.

But because measurement of the power (or torque)
is not precise enough for using it in the feedback con-
trol, the speed of gas-generator is used instead (power of
free-turbine is basically proportional to the speed of gas-
generator).

gas generator
(ver . 1.0)

G_p

n_FT

P_FT

n_GG

p3

T5

PLA

PLA

FCEID
fuel governor

(ver. 1.2)

I_r

n_GG

p_2

G_p

FADEC
power control

PLA [-]

M_FT

n_GG

T5

I_r
P_FT

n_FT

M_FT

Fig. 10. Simulink scheme of the power control

v
 _ ms

 v
 _ ms

rho
 rho

n
 _ P _ req

 n
 _ P _ req

n
 _ P - > n _ FT

i
 _ GB

n
 _ P n
 _ P

gas generator
 dle VZLU

 (
 ver

 . 1 . 0)

G
 _ p

n
 _ FT

P
 _ FT

 n
 _
 GG

 p
 3 T
 5

free turbine
 +

 propeller

phi

rho

v

P
 _ FT

n
 _ P

F
 _ P

P
 _ P

M
 _ FT

PLA
 PLA

PCEID
 propeller
 governor
 (

 ver
 . 1 . 0)

n
 _
 P

I
 20

phi

u
 GT n

 _ P
n
 _ P

GT P
 _ P

P
 _ P

GT M
 _ FT

M
 _ FT

GT F
 _ P

F
 _ P

FCEID
 fuel governor

 (
 ver

 . 1 . 2)

I
 _ r

n
 _
 GG

p
 _
 2

G
 _ p

FADEC
 speed control

n
 _ P

n
 _ P *

u

I
 20

FADEC
 power control

PLA
 [-]

M
 _ FT

n
 _ GG

T
 5

I
 _ r P

 _ FT

Информационные технологии 123

3.3 Automatic code generation and verification

Automatic code generation software is an exten-

sion tool that can create executable code from a model.
Real-Time Workshop (RTW) is a tool that can be used
for automatic code generation in MATLAB / Simulink.
The RTW generates stand-alone C code for proposed
algorithms modelled in Simulink. The resulting code
can be used for accelerated simulation which mostly
contains software in the loop and hardware in the loop
simulations. The code can be tuned and monitored by
these simulations.

After automatic generation the build-in verification
tool can locate and test dangerous parts of the generated
code and prevents the possible accidents. The code can
be tested by external verification tools like Cantata
C/C++/Ada as well as.

 Model in Simulink Generated code
Fig. 11. Automatic code generation

Note: The model part that contains algebraic con-

straint blocks has to be replaced by numerical iterative
calculation (showed in 12).

G

_

p

1

hlavni

Qs

20

)

^

2

 Qvkts

Qc
 n

_

v

p

_

c

1

Qc

Algebraic Constraint
 f

(

z

)

z

Solve

f

(

z

) =

0

Add

9

Add

8

Gp
 p

_

c

1

Fig. 12. Example of model with
algebraic constraint block

3.4 Software in the loop testing (SIL)

SIL test is proceed by the MATLAB / Simulink

tool. SIL tool is control systems simulator for temporal
and functional simulations. The behaviour of a control
system depends on the proposed architecture and on the
target hardware where the FADEC software is imple-
mented. On this account the results given from the SIL
tests can analyse only model behaviour, nevertheless the

SIL tests are important step for the finding of model
faults before model implementation into the hardware.

3.5 Hardware in the loop testing (HIL)

HIL is a kind of testing to validate the interactions

between the designed software and the test or real
hardware. The HIL tests can reduce the number of ex-
pensive prototypes. The HIL test is performed by the
dSPACE environment. The HIL testing offers to use
following test combination:

 Turbine model ECU model

 Real turbine ECU model

 Turbine model Real ECU

All test combination can be realized on the created

dSPACE workplace.

The dSPACE is used as a development environ-

ment that ensures implementation created models and
generated C code to the real (evaluation) hardware.
Controlling of the test procedures is provided by the
Real-Time Interface (RTI) tool. RTI provides tool for
controlling panel creation.

3.6 Target platform implementation

The proposed and generated FADEC application

code will be finally loaded to the target platform. The
target platform can run either as a standalone applica-
tion (without OS) or as a program module in OS or
RTOS. For both types of output code representation it is
necessary create link interface that allows running the
control algorithms.

4 Conclusion

Model based design for engine control system was

approved. Main advantage of presented approach con-
sists in development time and cost reduction. This ap-
proach supports very effectively certification process as
well as. Models were created and simulated for a virtual
system and will be verified on a real CP-CS.

Информационные технологии 124

Acknowledgement

Development of Complex Power-plant Control

System (CP-CS) for small aircraft was supported by
the European Union, FP6 IP research project No.: 30
888, ”CESAR – Cost Effective Small Aircraft”. Re-
quirements, mathematical descriptions of particular
sub-systems were provided as know-how by CESAR
partners (Ivchenko-Progress, VZLU, Jihostroj, PBS
and UNIS).

References

1. MATLAB SW producer: http://www.math-
works.com [cit. 2009-05-20].

2. RTCA/DO-178B: Software Considerations in
Airborne Systems and Equipment Certification. RTCA,
Inc.: USA, 1992.

3. RTCA/DO-254: Design Assurance Guidance for
Airborne Electronic Hardware. FAA Advisory.

Circulars, AC No: 20-152, June 30, 2005.
4. Švéda M. Experience with integration and cer-

tification of COTS based embedded system into ad-
vanced avionics system / M. Švéda, V. Opluštil // In
2007 Symposium on Industrial Embedded Systems Pro-
ceedings. Lisbon, Portugal: UNINOVA, Lisbon, Portu-
gal, 2007. ISBN 1–4244–0840–7.

5. Certification of Aircraft Propulsion Systems
Equipped with Electronic Control Systems, AMC 20-1
Effective: 26/12/2007. Annex II to ED Decision
2007/019/R of 19/12/2007, EASA.

6. Compliance Criteria for 14 CFR §33.28, Air-
craft Engines, Electrical and Electronic Engine Control
Systems. Advisory Circular 6/29/01, AC No: 33.28-1,
FAA.

7. Electronic Engine Control Specifications and
Standards. AIR4250, rev A, March 2004, SAE.

8. Automatic Code Generation Tools Development
Assurance, Position Paper CAST-13, June 2002 Certifi-
cation Authorities Software Team, FAA.

Поступила в редакцию 28.05.2009

Рецензент: д-р техн. наук, проф. C.В. Епифанов, Национальный аэрокосмический университет им. Н.Е. Жуков-
ского “ХАИ”, Харьков, Украина.

СУЧАСНІ МЕТОДИ РОЗРОБКИ СИСТЕМ АВТОМАТИЧНОГО УПРАВЛІННЯ

ДЛЯ АВІАЦІЙНИХ ДВИГУНІВ І ЇХНЯ СЕРТИФІКАЦІЯ
P. Axman, T. Kerlin, D. Svačina, V. Opluštil, J. Toman

Стаття описує необхідність використання автоматичних генераторів об'єктного коду для розробки сис-
тем критичного управління в авіакосмічній промисловості. Представлено базову модель V-циклу, її перева-
ги й зображені методи розробки, які отримані з моделей MATLAB/Simulink [1] для реального цільового за-
стосування. Увага також звернена до сертифікаційних вимог FAA/EASA ([5], [6], [7]) і конкретно процесу
сертифікації нового авіаційного обладнання. Ці методи використовуються протягом повного циклу розробки
підсистем авіаційного двигуна для малого цивільного літака (категорія FAR 23 / CS-23).

Ключові слова: літак, двигун, fadec, сертифікація, моделювання, V-цикл.

СОВРЕМЕННЫЕ МЕТОДЫ РАЗРАБОТКИ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
 ДЛЯ АВИАЦИОННЫХ ДВИГАТЕЛЕЙ И ИХ СЕРТИФИКАЦИЯ

P. Axman, T. Kerlin, D. Svačina, V. Opluštil, J. Toman
Статья описывает необходимость использования автоматических генераторов объектного кода для раз-

работки систем критического управления в авиакосмической промышленности. Представлена базовая мо-
дель V-цикла, ее преимущества и изображены методы разработки, которые получены из моделей
MATLAB/Simulink [1] для реального целевого применения. Внимание также обращено к сертификационным
требованиям FAA/EASA ([5], [6], [7]) и конкретно процессу сертификации нового авиационного оборудова-
ния. Эти методы используются в течение полного цикла разработки подсистем авиационного двигателя для
малого гражданского самолета (категория FAR 23 / CS-23).

Ключевые слова: самолет, двигатель, fadec, сертификация, моделирование, V-цикл.

Аксман Петр – инженер-программист отдела исследований и разработок мехатронических систем в

компании «UNIS», Брно, Чехия, e-mail: paxman@unis.cz.
Керлин Томас – канд. техн. наук, инженер-конструктор отдела исследований и разработок мехатрони-

ческих систем в компании «UNIS», Брно, Чехия, e-mail: tkerlin@unis.cz.
Свачина Давид – руководитель группы программистов отдела исследований и разработок мехатрони-

ческих систем в компании «UNIS», Брно, Чехия, e-mail: dsvacina@unis.cz.
Оплуштил Владимир – д-р техн. наук, руководитель отдела исследований и разработок мехатрониче-

ских систем в компании «UNIS», Брно, Чехия, e-mail: oplustil@unis.cz.
Томан Юрий – инженер-конструктор отдела исследований и разработок мехатронических систем в

компании «UNIS», Брно, Чехия, e-mail: jtoman@unis.cz.

