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An article describes the motivation for use of automatic code generators for the development of critical control 
applications in the aerospace industry. A V-cycle model based design is introduced and its advantages and de-
velopment practices that leads from design of a MATLAB/Simulink [1] models to a real target application are 
depicted. Attention is also paid to FAA/EASA certification authorities requirements ([5], [6], [7]) with respect 
to a certification process of any newly designed aviation equipment. These practices are being used during the 
entire development cycle of an aircraft engine subsystems for small civil aircraft (category FAR 23 / CS-23). 
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Introduction 
 
Software (SW) and hardware (HW) that are devel-

oped for critical application and have to meet a lot of 
standards that ensure their quality ([2], [3]). The certifi-
cation level depends on the target application. Some 
experiences with certification for embedded systems in 
aviation are described in [4]. Generally, it can be said, 
that the software and hardware development and certifi-
cation is time and cost consumable process. Main effort 
is to reduce development time and cost and ensure 
shorter time to market. On this account it is necessary to 
find new methods and approaches for SW and HW de-
veloping.  

This paper describes certification process and way 
how to reduce cost connected with the equipment certi-
fication; modern approaches for development of control 
systems using V-cycle and example of a Full Authority 
Digital Engine Control (FADEC) design cycle. 

 
1 Certification Aspects 

 
The main reason for using the Rapid Control Pro-

totyping (RCP) and development tools during the whole 
development cycle is to reduce time and costs of the 
development and certification process. We have ana-
lyzed COTS based SW and HW development tools 
which are fully or partially qualified for use in the aero-
space industry, or they are in progress to be qualified in 
the near future. We have also performed an internal 
study which shown that COTS development tools 
should shorten the development cycle very effectively. 

There are many qualified SW tools offered by 
many vendors. These SW tools cover airborne certifica-
tion requirements and comply with technical recom-
mendations and standards for safety-critical applica-

tions. Available methodologies introduce very effective 
processes during the SW and HW development cycle. 

The best way to save resources available for the 
project is using integrated development tools. It is al-
most impossible to use only one tool for all activities 
during the project development, but it is likely to use 
such tools which can cooperate among each other, as is 
shown in fig. 1. 

 
Fig. 1. Cooperation among the development tools 

 during the certification process 
 
An example of a commercial tool chain is shown 

in Figure 3. These development tools can be fully stan-
dardized for creation of higher quality and more reliable 
software, e.g. C, C++, Ada, Java compilators and auto-
matic code generators, which are usually a part of Inte-
grated Development Environment (IDE), such as 
SCADE, MATLAB/Simulink, NI LabView, etc. Ability 
to reuse certified SW parts and artifacts within the soft-
ware modification process for use in another application 
(especially RTOS like LynxOS-178, PikeOS, Integrity-
178B, etc., see more in [2], [3]) leads to cost reduction 
and time effective development because SW verification 
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and code tests are then less time consuming processes. 
Static and dynamic code testing tools are available com-
mercially (CANTATA++, CodeTest, VectroCast, etc.). 

 

 
 

Fig. 2. Model of SW development process  
and its impact on SW development tools application 

 
A certification by FAA/EASA agencies is required 

for both simple (based on CPU and simple electronic 
components) and complex hardware architectures 
(based on PLD, FPGA, ASIC micro-coded technology). 
Using simple hardware architecture with a standard core 
CPU (Freescale, ARM, TI, etc.) could simplify the certi-
fication process very dramatically because of proven 
architecture and reference projects that have passed the 
certification process formerly. The same situation is 
with COTS bus technologies - these are being used in 
the automotive industry for a long time and their safety, 
performance and reliability has been sufficiently proven 
[6], [7], [8]. 

Thus, wide enforcement of COTS components and 
data buses into the aerospace sector is only a matter of 
time. 

  
1.1 RTCA/DO-178B and RTCA/DO-254 standards 

 
The development of every equipment for use in 

aerospace has to be approved by FAA or EASA certifi-
cation agencies. The two major standards in the aero-
space industry that describe all the requirements and 
recommendations for successful certification are the 
RTCA/DO-178B – Software Considerations in Airborne 
Systems and Equipment Certification [4] and 
RTCA/DO-254 – Design Assurance Guidance for Air-

borne Electronic Hardware [5]. These standards expect 
from developers to describe the whole development 
cycle in order to assure reliability, data integrity, per-
formance, proper development cycle, system configura-
tion management and continuous airworthiness. As a 
resulting benefit there is identification of bottlenecks 
and prevention of fault states. 

On the other hand, the drawback of these two stan-
dards is a necessity to elaborate a comprehensive 
amount of documentation, both for the SW and HW 
development. 

List of the SW development documentation in ac-
cordance with DO-178B is given below: 

 Plan for Software Aspects of Certification 
(PSAC) 

 Software Development Plan (SDP) 
 Software Verification Plan (SVP) 
 Software Configuration Management Plan 

(SCMP) 
 Software Quality Assurance Plan (SQAP) 
 Software Requirements Standards (SRS) 
 Software Design Standards (SDS) 
 Software Code Standards (SCS) 
 Software Requirements Data (SRD) 
 Software Design Description (SDD) 
 Software Verification Cases and Procedures 

(SVCP) 
 Software Life Cycle Environment Configura-

tion Index (SECI) 
 Software Configuration Index (SCI) 
 Software Accomplishment Summary (SAS) 
 
The minimum software life cycle data to be sub-

mitted to a certification authority is: 
 Plan for Software Aspects of Certification 

(PSAC) 
 Software Configuration Index (SCI) 
 Software Accomplishment Summary (SAS) 
 
The regulation concerning retrieval and approval 

of SW life cycle data related to the type design applies 
to: 

 Software Requirements Data 
 Software Design Description 
 Source Code 
 Executable Object Code 
 Software Configuration Index 
 Software Accomplishment Summary 
 
List of HW development documentation in accor-

dance with DO-254: 
 Plan for Hardware Aspects of Certification 

(PHAC) 
 Hardware Development Plan (HDP) 
 Hardware Verification Plan (HVP) 
 Hardware Configuration Management Plan 

(HCMP) 
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 Hardware Process Assurance Plan (HPAP) 
 Hardware Requirements Standards (HRS) 
 Hardware Requirements (HR) 
 Hardware Detailed Design Data: Top ‚ Level 

Drawings (TLD) 
 Hardware Detailed Design Data: Assembly 

Drawings (AD) 
 Hardware Detailed Design Data: Installation 

Control Drawings (ICD) 
 Hardware Traceability Data (HTD) 
 Hardware Acceptance Test Criteria (HATC) 
 Hardware Configuration Management Re-

cords (HCMR) 
 Hardware Process Assurance Records 

(HPAR) 
 Hardware Accomplishment Summary (HAS) 
 
The minimum hardware life cycle data to be sub-

mitted to a certification authority is: 
 Plan for Hardware Aspects of Certification 

(PHAC) 
 Hardware Verification Plan (HVP) 
 Hardware Detailed Design Data: Top ‚ Level 

Drawings (TLD) 
 Hardware Accomplishment Summary (HAS) 
 
As is shown above, the list of required documenta-

tion is really comprehensive and it is – together with 
strict coding practices, test sets and system verification 
– the most disincentive issue during the development 
cycle of any new equipment/technology for the aero-
space industry, because it requires strong experience, 
deep know-how and well managed certification prac-
tices. 

 
2 Development of Control Systems 
 
The development procedures and practices in the 

aerospace industry have originated on those used in the 
industry and automotive sector. A process that describes 
steps and linkages between individual development 
stages of the project has been established over the time. 
This process is often called a ”V-cycle”. 

 
2.1 V–cycle 

 
The V-Cycle is a graphical construct used to com-

municate a model-based software development method-
ology. The advantages of V–cycle lies in its inherently 
intuitive nature, easy reuse of model and portability 
across multiple platforms. Model-based control design 
is a time saving and cost-effective approach, allowing 
engineers to work with a single model in an integrated 
software environment. The graphical representation of 
the V-cycle is shown in Fig. 3. 

The complete design consists of particular steps, 
such as: control design, rapid control prototyping, target 

implementation, hardware-in-the-loop testing and cali-
bration. 

Within the function design stage, the modelling 
and computer simulations of closed-loop system have 
been done. A mathematical model of both the controlled 
system (so called plant model) and a controller (ECU) 
are necessary at this point. The important thing is that 
the control algorithms are developed as symbolic mod-
els, not in a C-code. 

When the synthesis of the ECU is finished and the 
results of simulations are well, the engineers start with 
verification of ECU’s algorithms in ”real-time” on a 
real-time hardware. This stage is called a rapid control 
prototyping (RCP).  

 

 
Fig. 3. The V-cycle development process [1] 
 
RCP is a process that lets the engineers quickly 

test and iterate control strategies on a real-time com-
puter with either real or modelled system-under-control. 
The computer model is used in case where inadequate 
action of ECU could cause a damage of equipment or 
endanger lives. The biggest advantage of using the inte-
grated software environment for modelling, simulation 
and also function prototyping is that the control engi-
neer does not have to be a C-code expert nor have 
enough skills to port the C-code to a real-time target. By 
virtue of an automated build process the RCP systems 
do this work for them. 

In the next stage, the target code for the ECU is 
automatically generated by a special software, which 
reads math model files and generates a compile-able 
code that replicates the behaviour of the model. This 
dramatically reduces the implementation time and, in 
addition, the engineers have systematic consistency be-
tween a specification and production stage. Moreover, 
improvements to the ECU could be easily added, even 
after implementation of an initial code. The time for 
hardware-in-the-loop testing is coming on once the 
ECU is programmed. 

Hardware-in-the-loop is a form of a real-time 
simulation that differs from a pure real-time simulation 
by addition of a ”real” component into the loop. This 
component might be the ECU or the real system-under-
control. The current industry definition of the hardware-
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in-the-loop system is that the plant is simulated and the 
ECU is real. The model of the plant (and the simulation 
HW also) is the same like in the stage of RCP. 

The next step is a calibration, which is a process of 
optimizing or tuning real control algorithms to get the 
desired response from the system. A calibration tool is a 
combination of a hardware interface and a software ap-
plication that enables the engineer to access and change 
the ”calibration variables” in the ECU. Typical compo-
nents of control algorithms which need calibration are 
look-up tables, gains and constants. The structure of the 
control algorithm is not changed during the calibration 
process. 

 
2.2 Implementation of the V-cycle 

 
The typical V-cycle development process is based 

on a software development tools such as MATLAB and 
dSPACE. These tools provide a seamless transition 
from a block diagram to a real-time and target hardware. 

Particularly, for function design is mostly used 
MATLAB, Simulink, Stateflow and other toolboxes for 
MATLAB. These tools together comprise a complex 
software package that forms the core environment for 
mathematical computation, analysis, visualization, algo-
rithm development, etc. MATLAB is a high-level tech-
nical computing language and interactive environment 
that enables performing computationally intensive tasks 
such as algorithm development, data visualization, data 
analysis, and numeric computation. Simulink provides 
an interactive graphical environment and a customizable 
set of block libraries that let the user to design, simulate, 
implement and test a variety of time-varying systems. 
With Stateflow, you can integrate state diagrams into 
Simulink models. 

During RCP stage the Real-Time Workshop 
(RTW) and Stateflow Coder (SC) automatically gener-
ate a C code from Simulink block diagrams and 
Stateflow systems. And here comes into play a dSPACE 
Real-Time Interface (RTI) which is a link between a 
dSPACE hardware and the development software from 
Mathworks. RTW/SC generates the model code, while 
RTI provides blocks that implement the I/O capabilities 
of dSPACE systems in Simulink models. Then the real-
time model is compiled, downloaded and started auto-
matically on the real-time hardware. The program can 
now be controlled and instrumented by the GUI applica-
tion – ControlDesk. This is referred to as an experiment 
control. 

The system-under-control could be also simulated 
on a real time hardware, especially in case of very com-
plicated systems, such as e.g. engines. Many different 
types of HW simulators that cover all the different re-
quirements (such as computational power, I/O interface, 
data bus systems, etc.) are provided with the simulations 

tools. The generated code could be optimized for fixed- 
or floating-point operations, in accordance to a certain 
processors. Versatile code configuration options ensure 
that the produced code copes with all the processor con-
straints. 

Hardware-in-the-loop stage is closely connected 
with the next stage – calibration. 

 
3 FADEC Development Cycle 

 
FADEC is the most important control authority on 

the aircraft. The new and modern approach for design-
ing of the engine control unit brings: 

 Shorter developing time, 
 Reducing time for code testing, 
 Reducing cost for prototypes manufacturing, 
 Higher quality of the application code, 
 Effective support of certification, etc. 
 
The design cycle of the FADEC will be described 

on the Complex Power-plant Control System (CP-CS) for 
small aircraft that is designed in a frame of the project 
CESAR. Power control system configuration for small 
aircraft is shown in Fig. 4, its block diagram is shown in 
Fig. 6. The power of the jet turbine is control by the dual 
channel FADEC that cooperates with Fuel Control Elec-
trical Interface Device (FCEID) and Propeller Control 
Electrical Interface Device (PCEID). The FADEC can be 
back-upped by the manual control system.  

 
Fig. 4. CP-CS system configuration for small aircraft 

 
Generally the FADEC model based development 

consists of the following steps: 
 Engine and control system requirements and 

their decomposition 
 Mathematical modelling 
 Model integration and simulation (Model in 

the loop - MIL) 
 Automatic code generation and verification 
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[8] 
 Software in the loop (SIL) testing 
 Hardware in the loop (HIL) testing 
 Target platform implementation (Processor in 

the loop - PIL) 
The graphical relation among particular steps of 

model based design is shown in Fig. 5. 
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Fig. 5. FADEC development cycle 

 

3.1 Mathematical modelling 

A model formulation of controlled system is an es-
sential part during the stage of its control algorithm de-
sign. The model is used for examination and prediction 
of the behaviour of the real system. Real system could 
be very expensive.  

A model of the system is based on the mathemati-
cal description. In engineering disciplines the mathe-
matical model is usually described by a set of algebraic, 
differential equations, the transfer functions or the state 
matrixes.  

These relations are mostly derived either by a 
mathematic-physical analysis of the system’s phenome-
non or by an experimental examination of the real sys-
tem. Within the modelling of very complicated systems 
both approaches are combined. The aim is to get as pre-
cise model as possible, but also as simple as possible. 
These two requests go unfortunately against each other 
– the more precise model is more complicated. 

The CP-CS model is very complex and highly 
non-linear system. The physical phenomenon involved 
to cover domains such as solid and fluid mechanics, 
thermodynamics and electromagnetism. 

All the model parts are based on the mathematical 
description of the each part, provided by their designers.  

3.2 Model integration and simulation 

The simulation is a way, how to verify the behav-
iour of a control system that includes its environment 
without real hardware. 

The models were created in MATLAB / Simulink 
that is a comprehensive software package that form the 
core environment for mathematical computation, analy-
sis, visualization, algorithm development, model-based 
design, etc. The schematic drawing implementation of 
the real hardware and its mathematical models to the 
Simulink is shown in Fig. 7.  

 
Fig. 7. Mathematical model implementation  

to the simulation software (Simulink) 
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Fig. 6. Block diagram of VTPE and CP-CS architecture 
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The structure of the VTPE model is based on split-
ting of the whole engine into two basic parts, which can 
be solved separately. These main parts are: 
gas-generator (inlet, compressor, combustor and tur-
bine) and power turbine with gearbox and propeller to-
gether. There is only thermodynamic power linkage 
between these two parts, the only hand over variable is 
the power transmitted from gas-generator to free turbine 
PFT. Due to this fact the complexity of model is mark-
edly decreased. The MATLAB / Simulink representa-
tion of the VTPE that is depicted in picture Fig. 6 is 
shown in Fig. 8. The VTPE model is precise enough to 
for examination of its behaviour during flight, for dif-
ferent aircraft speeds, heights, power extractions and 
outside conditions. The start of the engine, reverse 
mode, taxiing and feathering are not possible to simu-
late. 

 

Fig. 8. Simulink diagram of VTPE  
and CP-CS architecture 

 
All necessary climatic variables are computed on 

the basis of International Standard Atmosphere model 
(ISA). The input blocs of the ISA model could be set to 
a constant or to any time-dependent curve (e.g. typical 
flight profile could be simulated). 

 
Propeller Speed Control 
 
This part of FADEC must keep propeller speed at 

constant speed throughout the whole range of inputs 
(e.g. for changing value of power transmitted from gas-
generator to free turbine and for all possible climatic 
conditions).  

System under control is ‘propeller governor’ + 
‘free turbine + propeller’ and control signal is control 
current of ‘propeller governor’ I20. The control structure 
is cascade, with inner  feedback loop and outer nP 
feedback loop. Instead of measuring  directly, the 
value of u is measured, which is directly proportional 
to.  

The overall architecture of this structure is shown 
in Fig. 9. 
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Fig. 9. Simulink scheme of the propeller speed control 

 
Requested propeller speed is set with respect to 

Propeller Speed Switch, with which pilot can set one of 
the three different propeller states (speeds). This value 
is restricted by a rate limiter, which doesn’t allow too 
steep changes of this value. The difference between 
requested and actual value of nP is processed by and 
PI+AW (PI + antiwind-up) controller, whose output is 
requested value of. The error signal of  is processed 
with another (PI2) controller, which produces control 
current I20. It supplies an electromagnetic actuator 
which drives a pilot valve of propeller governor that 
changes an amount of oil flowing to or from propeller 
head resulting in change of  and change of nP too. The 
PI+AW and PI2 were set in respect of achieving as good 
response to control signal as possible. 

 
Power Control 
 
Power control should ensure proper power of the 

engine, particularly proper power on the free-turbine 
shaft PFT, with respect to Power Lever and throughout 
all possible climatic conditions. It also checks important 
parameters and doesn’t allow them to overcome secure 
values. System under control consists of ‘fuel governor’ 
with ‘gas-generator’, control signal is a control current 
of ‘fuel governor’ Ir. The control structure comprises 
nGG feedback loop with PI controller and some blocs 
providing limitations. 

But because measurement of the power (or torque) 
is not precise enough for using it in the feedback con-
trol, the speed of gas-generator is used instead (power of 
free-turbine is basically proportional to the speed of gas-
generator). 
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Fig. 10. Simulink scheme of the power control 
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3.3 Automatic code generation and verification 
 
Automatic code generation software is an exten-

sion tool that can create executable code from a model. 
Real-Time Workshop (RTW) is a tool that can be used 
for automatic code generation in MATLAB / Simulink. 
The RTW generates stand-alone C code for proposed 
algorithms modelled in Simulink. The resulting code 
can be used for accelerated simulation which mostly 
contains software in the loop and hardware in the loop 
simulations. The code can be tuned and monitored by 
these simulations. 

After automatic generation the build-in verification 
tool can locate and test dangerous parts of the generated 
code and prevents the possible accidents. The code can 
be tested by external verification tools like Cantata 
C/C++/Ada as well as. 

 

  Model in Simulink           Generated code  
Fig. 11. Automatic code generation 

 
Note: The model part that contains algebraic con-

straint blocks has to be replaced by numerical iterative 
calculation (showed in 12).  
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Fig. 12. Example of model with  
algebraic constraint block 

 
3.4 Software in the loop testing (SIL) 

 
SIL test is proceed by the MATLAB / Simulink 

tool. SIL tool is control systems simulator for temporal 
and functional simulations. The behaviour of a control 
system depends on the proposed architecture and on the 
target hardware where the FADEC software is imple-
mented. On this account the results given from the SIL 
tests can analyse only model behaviour, nevertheless the 

SIL tests are important step for the finding of model 
faults before model implementation into the hardware. 

 
3.5 Hardware in the loop testing (HIL) 

 
HIL is a kind of testing to validate the interactions 

between the designed software and the test or real 
hardware. The HIL tests can reduce the number of ex-
pensive prototypes. The HIL test is performed by the 
dSPACE environment. The HIL testing offers to use 
following test combination: 

 Turbine model  ECU model 

 
 Real turbine  ECU model 

 
 Turbine model  Real ECU 

 
All test combination can be realized on the created 

dSPACE workplace. 
 
The dSPACE is used as a development environ-

ment that ensures implementation created models and 
generated C code to the real (evaluation) hardware. 
Controlling of the test procedures is provided by the 
Real-Time Interface (RTI) tool. RTI provides tool for 
controlling panel creation.  

 
3.6 Target platform implementation 

 
The proposed and generated FADEC application 

code will be finally loaded to the target platform. The 
target platform can run either as a standalone applica-
tion (without OS) or as a program module in OS or 
RTOS. For both types of output code representation it is 
necessary create link interface that allows running the 
control algorithms. 

 
4 Conclusion 

 
Model based design for engine control system was 

approved. Main advantage of presented approach con-
sists in development time and cost reduction. This ap-
proach supports very effectively certification process as 
well as. Models were created and simulated for a virtual 
system and will be verified on a real CP-CS.  
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СУЧАСНІ МЕТОДИ РОЗРОБКИ СИСТЕМ АВТОМАТИЧНОГО УПРАВЛІННЯ  

ДЛЯ АВІАЦІЙНИХ ДВИГУНІВ І ЇХНЯ СЕРТИФІКАЦІЯ 
P. Axman, T. Kerlin, D. Svačina, V. Opluštil, J. Toman 

Стаття описує необхідність використання автоматичних генераторів об'єктного коду для розробки сис-
тем критичного управління в авіакосмічній промисловості. Представлено базову модель V-циклу, її перева-
ги й зображені методи розробки, які отримані з моделей MATLAB/Simulink [1] для реального цільового за-
стосування. Увага також звернена до сертифікаційних вимог FAA/EASA ([5], [6], [7]) і конкретно процесу 
сертифікації нового авіаційного обладнання. Ці методи використовуються протягом повного циклу розробки 
підсистем авіаційного двигуна для малого цивільного літака (категорія FAR 23 / CS-23). 

Ключові слова: літак, двигун, fadec, сертифікація, моделювання, V-цикл. 
 

СОВРЕМЕННЫЕ МЕТОДЫ РАЗРАБОТКИ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ 
 ДЛЯ АВИАЦИОННЫХ ДВИГАТЕЛЕЙ И ИХ СЕРТИФИКАЦИЯ 

P. Axman, T. Kerlin, D. Svačina, V. Opluštil, J. Toman 
Статья описывает необходимость использования автоматических генераторов объектного кода для раз-

работки систем критического управления в авиакосмической промышленности. Представлена базовая мо-
дель V-цикла, ее преимущества и изображены методы разработки, которые получены из моделей 
MATLAB/Simulink [1] для реального целевого применения. Внимание также обращено к сертификационным 
требованиям FAA/EASA ([5], [6], [7]) и конкретно процессу сертификации нового авиационного оборудова-
ния. Эти методы используются в течение полного цикла разработки подсистем авиационного двигателя для 
малого гражданского самолета (категория FAR 23 / CS-23). 

Ключевые слова: самолет, двигатель, fadec, сертификация, моделирование, V-цикл. 
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