УДК 539.4

В.В. ПОКРОВСКИЙ¹, С.Б. КУЛИШОВ², В.Г. СИДЯЧЕНКО¹, В.Н. ЕЖОВ¹, В.С. ЗАМОТАЕВ¹

¹Институт проблем прочности им. Г.С.Писаренко НАН Украины, Киев, Украина ²Государственное предприятие Научно-производственный комплекс газотурбостроения «Зоря»-«Машпроект», Николаев, Украина

ПРОГНОЗИРОВАНИЕ ХАРАКТЕРИСТИК ВЯЗКОСТИ РАЗРУШЕНИЯ ЖАРОПРОЧНОЙ СТАЛИ ТИПА 12Сг-2Ni-M₀ С УЧЁТОМ ТЕМПЕРАТУРЫ И ЭФФЕКТА МАСШТАБА

Исследовано влияние температуры и размера образцов на статические характеристики трещиностойкости жаропрочной стали типа 12Cr-2Ni-Mo. Показано, что в диапазоне температур от 20⁰ до 450⁰C увеличение толщины образцов приводит к незначительному повышению вязкости разрушения полученной по 5% секущей в соответствии со стандартами по определению характеристик трещиностойкости. Расчёт характеристик трещиностойкости с учётом эффекта масштаба по разработанной ранее расчётно-экспериментальной модели для изученной стали показал удовлетворительное соответствие эксперименту во всём исследованном диапазоне температур.

Ключевые слова: трещиностойкость, вязкость разрушения, жаропрочная сталь, коэффициент интенсивности напряжений, эффект масштаба.

Введение

Одним из наиболее нагруженных конструкционных элементов газотурбинных установок (ГТУ) являются диски. Их разрушение не локализуется в корпусе изделия и может повлечь за собой катастрофические разрушения. При переходе от ступицы к ободу размеры поперечного сечения диска изменяются. Кроме того, ободная часть диска содержит множество концентраторов напряжений в виде «ёлочных» пазов, отверстий для охлаждающего воздуха и креплений балансировочных грузиков, различные фрезеровки и др. которые в процессе эксплуатации являются инициаторами зарождения трещин. Для исключения внезапных разрушений дисков предлагается применять концепцию эксплуатации ГТУ «по техническому состоянию». Для обоснованного назначения объемов и сроков проведения регламентных работ, требуется экспериментальное исследование характеристик трещиностойкости материала диска при различных режимах нагружения с учётом условий эксплуатации (температуры) и конструкционных особенностей изделия (его размеров и формы).

Анализ литературы показывает, что форма и размеры тела могут иметь значительное влияние на характеристики трещиностойкости. Поэтому весьма важной и актуальной задачей механики разрушения является прогнозирование влияния эффекта масштаба на величину статической и циклической вязкости разрушения, а также обоснование возможности использования критических значений характеристик трещиностойкости, полученных на лабораторных образцах для оценки вязкости разрушения реального конструкционного элемента – диска.

В статье представлены результаты экспериментального исследования температурной зависимости статической вязкости разрушения жаропрочной дисковой стали 12Cr-2Ni-Mo в диапазоне температур +20...+450 °C на компактных образцах толщиной 25 мм (CT-1) и 10 мм (CT-0,5), и на основе этого выполнена апробация разработанной ранее [1] методики прогнозирования вязкости разрушения крупногабаритных образцов по результатам испытания образцов с трещинами малых размеров.

1. Экспериментальная часть

Вязкость разрушения при статическом растяжении компактных образцов толщиной 25 мм и 10 мм исследовалась в соответствии с рекомендациями отечественных и зарубежных стандартов [2, 3] в диапазоне температур +20 °С...+450 °С.

Значения критических коэффициентов интенсивности напряжений рассчитывали по диаграммам «нагрузка – перемещение по линии действия силы»: по 5% секущей и по максимальной нагрузке, соответствующей разрушению образца. Анализ результатов испытаний показал, что для образцов СТ-1 и СТ-0.5 различия между $K_0^{5\%}$ и K_{max} составляет

© В.В. Покровский, С.Б. Кулишов, В.Г. Сидяченко, В.Н. Ежов, В.С. Замотаев АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2010, № 9 (76) 10...40% (рис. 1 а, б). Причём при повышении температуры испытаний наблюдается тенденция к увеличению отношения $K_{max}/K_Q^{5\%}$.

Рис. 1. Температурные зависимости статической трещиностойкости, полученные по 5% секущей ($K_Q^{5\%}$) и по нагрузке при разрушении (K_{max}) для образцов толщиной: а – 25 мм; б – 10 мм

При переходе от компактных образцов толщиной 25 мм на образцы толщиной 10 мм более ярко проявляются пластические свойства стали, что выражается в губах среза на поверхностях изломов, которые имеют место даже при температуре 20 °C. Проявляется общая тенденция влияния толщины образца на характеристику трещиностойкости, полученную по 5% секущей при различных температурах. Вязкость разрушения для образцов толщиной 25 мм в среднем на 10% превышает вязкость разрушения, полученную на образцах 10 мм.

Полученные результаты согласуются с многочисленными данными литературы, где отмечается, что при изменении размера образца критические характеристики трещиностойкости могут увеличиваться, уменьшаться либо оставаться неизменными.

2. Расчётно-экспериментальная модель прогнозирования эффекта масштаба

На основании, представленного в работе [4] обширного экспериментального материала о трещиностойкости конструкционных материалов различной категории прочности была разработана методика, позволяющая прогнозировать вязкость разрушения на её верхнем шельфе температурной зависимости с учетом влияния напряженного состояния, которая апробировалась в данной работе для стали типа 12Cr-2Ni-Mo.

Методика основана на физико-механической, модели вязкого разрушения, контролируемого достижением пластической деформацией в вершине трещины критического значения ϵ_f . При этом предполагается, что величина ϵ_f , предшествующая страгиванию трещины по механизму коалесценции пор является функцией трехосности напряженного состояния σ_m/σ_i . Функция введенного параметра χ , являющегося явной функцией всех трех главных локальных напряжений в зоне предразрушения у вершины трещины и определяет степень приближения напряженного состояния тела данной толщины к условиям плоской деформации.

Для принятой модели вязкого разрушения условие разрушения описывается следующим выражением:

$$\left. \varepsilon_{i}^{p}\left(x\right) \right|_{x=X_{c}} = \varepsilon_{f} , \qquad (1)$$

где ϵ_i^p и ϵ_f – соответственно интенсивность локальных пластических деформаций в вершине трещины и критическая деформация; X_c – характеристическое расстояние.

Между критической деформацией ϵ_f и трехосностью напряженного состояния σ_m/σ_i , существует функциональная зависимость, которая удовлетворительно описывается уравнением, предложенным Бриджменом:

$$\varepsilon_{\rm f} = C_{\rm f} \, \exp\!\left(-k_{\rm f} \, \frac{\sigma_{\rm m}}{\sigma_{\rm i}}\right) + \varepsilon_{\rm If} \,, \qquad (2)$$

где σ_m – гидростатическое напряжение, а σ_i – интенсивность напряжений.

Влияние размеров и формы тела на критическую деформацию может быть учтено через их влияние на трехосность напряженного состояния.

Далее, без выводов промежуточных зависимостей, которые подробно описаны в работе [4], приведены только конечные формулы для определения принципиально важных параметров, заложенных в предложенную модель, зависимости для оценки характеристик вязкости разрушения, полученные на её основе, и показаны возможности прогнозирования влияния напряжённо-деформированного состояния, обусловленного изменением размеров конструкционных элементов на характеристики их вязкости разрушения.

Параметр χ определяется решением трехмерной упругой задачи:

$$\chi = \frac{\sigma_3}{\nu(\sigma_1 + \sigma_2)},\tag{3}$$

где σ₁, σ₂, σ₃ – главные напряжения у вершины трещины, ν – коэффициент Пуассона.

При ПНС $\chi = 0$, при ПД $\chi = 1$, а в общем трехмерном случае $0 \le \chi \le 0$.

Уравнение для прогнозирования вязкости разрушения:

$$J_{c}\left[C_{f} \exp\left(-k_{f} \frac{\sigma_{m}}{\sigma_{i}}\right) + \varepsilon_{If}\right]^{n+1} X_{c} M_{f} \left(1 - 2\chi \nu\right)^{-2}, (4)$$

где $M_f = \frac{3\pi A}{1+\nu}$; n, A – коэффициенты уравнения

 $\sigma_i = A \epsilon_i^n$, описывающего кривую деформирования материала.

В отличие от ранее известных в литературе зависимостей, связывающих вязкость разрушения с критической деформацией, в уравнении (4) имеются параметры σ_m/σ_i и χ , учитывающие влияние напряженного состояния на критическую деформацию. Т.е. определив для конкретных размеров и формы тела значения σ_m/σ_i и χ , можно прогнозировать для этого тела значение вязкости разрушения по известным константам материала A, n, v, C_f , k_f и ε_{If} , полученным при испытании образцов на одноосное растяжение (гладких и с концентраторами). Кроме зависимости (4), основанной на результатах испытаний образцов без трещин, получена зависимость для прогнозирования вязкости разрушения крупногабаритных тел по результатам испытаний малых лабораторных образцов с трещиной, при условии что в них соблюдаются условия ПНС ($\chi_1 \rightarrow 0$):

$$(J_{c})_{2} = \frac{(J_{c})_{1}}{(1-2\chi_{2}\nu)^{2}} \left[\frac{C_{f} \exp\left[-k_{f}\left(\frac{\sigma_{m}}{\sigma_{i}}\right)_{2} + \varepsilon_{If}\right]}{C_{f} \exp\left[-k_{f}\left(\frac{\sigma_{m}}{\sigma_{i}}\right)_{1} + \varepsilon_{If}\right]} \right]^{n+1}.(5)$$

Из этой зависимости следует, что для прогнозирования вязкости разрушения крупногабаритного тела помимо вязкости разрушения (Jc)₁ малого образца и констант C_f, k_f, ϵ_{lf} и п необходимо знать параметры σ_m/σ_i и χ для этого тела. Зависимость (5) предполагает дополнительные испытания малых образцов с трещиной, но при этом исключаются проблемы, связанные с определением величины Xc.

3. Сопоставление экспериментальных и расчётных данных

Исследование влияния напряжённого состояния на критическую деформацию ε_f производили на цилиндрических образцах с различным радиусом кольцевых выточек (R = 1 мм, R = 2 мм, R = 4 мм), для которых трёхосность напряжённого состояния σ_m/σ_i и ε_f рассчитывали по формулам Бриджмена:

$$\varepsilon_{\rm f} = 2\ln\left(\frac{\rm d_0}{\rm d_k}\right); \tag{6}$$

$$\frac{\sigma_{\rm m}}{\sigma_{\rm i}} = \frac{1}{3} + \ln\left(\frac{d_{\rm k}}{4R_{\rm k}} + 1\right),\tag{7}$$

где d_0 – диаметр рабочей части образца до нагружения; d_k – диаметр рабочей части образца при разрушении; R_k – радиус в вершине концентратора.

Зависимость критической деформации є_f от трёхосности напряжённого состояния при различных температурах приведена на рис. 2.

Рис. 2. Зависимость критической деформации от трёхосности напряженного состояния и температуры

В целом представленные экспериментальные данные показывают, что критическая деформация является убывающей функцией трёхосности напряжённого состояния, которая может быть принята в виде экспоненциального уравнения типа (2) с параметрами C_f, k_f и ε_{lf}.

Параметры уравнения (2), аппроксимирующего экспериментальные данные, определялись при помощи программы Origin 6.1.

В соответствии с методологией прогнозирования вязкости разрушения изложенной в предыдущем разделе для применения формул (4) и (5) необходимо знать распределение параметров χ и σ_m/σ_i по фронту трещины.

Для вычисления параметра χ решали трёхмерную линейно-упругую задачу с использованием программного комплекса ANSYS. Ввиду симметрии при расчёте строили модель ¼ образца (рис. 3). Трещину моделировали, ограничивая перемещения в направлении оси ОҮ. Нагрузку прикладывали по линии действия силы, задавая перемещения узлов в направлении оси ОҮ. При решении данной задачи использовали восьмиузловой призматический элемент.

Рис. 3. Конечноэлементная модель образца СТ-0.5

На рис. 4 представлено распределение параметра χ по толщине CT-0.5 образца, посчитанного по формуле (3). Как видно из рисунка по мере перехода от условий близких к плоской дефформации (в начале координат) к плоскому напряженному состоянию χ изменяется от 0,794 до 0,266.

по толщине СТ-0,5 образца

Средневзвешенное по толщине образца значение χ можно найти по формуле:

$$\chi = \frac{1}{t} \int_{0}^{t} \chi(t) dt , \qquad (8)$$

где t – толщина образца. В данном случае после интегрирования по толщине имеем $\chi = 0,68$. Для образца CT-1 – $\chi = 0,8$.

Для определения жёсткости напряжённого состояния σ_m/σ_i решали на той же КЭ модели трёхмерную упругопластическую задачу в геометрически нелинейной постановке.

На рис. 5 представлено распределение параметра σ_m/σ_i по толщине CT-0.5 образца при температуре 400 °C и смещении по линии действия силы 0,14 мм.

Расстояние от фронта трещины по оси ОХ было равно расстоянию, на котором реализуется максимальное напряжение по Мизесу у фронта трещины. Параметр σ_m/σ_i , полученный в результате решения трёхмерной упругопластической задачи, усреднялся по толщине образца подобно χ по формуле

$$\frac{\sigma_{\rm m}}{\sigma_{\rm i}} = \frac{1}{t} \int_{0}^{t} \frac{\sigma_{\rm m}}{\sigma_{\rm i}}(t) dt \ . \tag{9}$$

Результаты обработки экспериментальных данных по разрушению круглых цилиндрических образцов с различными концентраторами напряжений и диаграмм деформирования, а также численных расчётов по определению параметров χ и σ_m/σ_i приведены в табл. 1.

Характеристическое расстояние X_c было принято приближённо как два раскрытия вершины трещины [4].

На рис. 6 приведено сравнение результатов расчёта по формулам (4) и (5) с экспериментом характеристик трещиностойкости для СТ-1 и СТ-0.5 образцов при различных температурах.

Пересчёт J_с на K_с осуществлялся по формуле:

$$K_{c} = \sqrt{J_{c} \cdot E'}, \qquad (10)$$

_		•	-		-					-	
	t, ºC	C_{f}	$k_{\rm f}$	٤ _{If}	n	А	Хс, мм	Mf, кН/мм²	μ	χ для CT-1	х для CT-0,5
	20	8159	18,3	0,193	0,061	1,29	0,0072	9,35	0,3	0,8	0,67
	300	383	13,7	0,238	0,123	1,562	0,0072	11,32	0,3	0,8	0,67
	400	79,25	10,4	0,197	0,21	2,18	0,0072	15,8	0,3	0,8	0,67

Рис. 6. Экспериментальные и расчётные данные характеристик статической трещиностойкости: ■ – СТ-1 эксперимент; ● – СТ-0.5 эксперимент; × – СТ-1 расчет по (4); ★ – СТ-0.5 расчет по (4); ★ – СТ-1 расчет по (5)

где E' = E для плоского напряженного состояния и $E' = \frac{E}{1 - v^2}$ для плоской деформации; E - модуль

Юнга.

Как видно из приведенного графика характер температурной зависимости вязкости разрушения рассчитанный по формуле (4) в целом повторяет характер изменения экспериментально полученных критических характеристик трещиностойкости от температуры.

Данные прогноза по формуле (4) попадают в полосу разброса экспериментальных данных по вязкости разрушения при температурах 300° и 400°, а при температуре 20° прогнозируются консервативное значение вязкости разрушения, которое идёт в запас по трещиностойкости материала.

Таблина 1

В целом прогнозируется – уменьшение критических характеристик трещиностойкости при уменьшении размера образца.

Заключение

На основании экспериментальных исследований стали типа 12Cr-2Ni-Mo показана возможность применения методики пересчёта значений вязкости разрушения малых образцов СТ-0.5 на большие СТ-1, которая учитывает напряжённо-деформированное состояние и соответственно толщину конструкционного элемента. Результаты прогноза попадают в полосу разброса экспериментальных данных.

Литература

1. Трощенко В.Т. Прогнозирование трещиностойкости теплоустойчивых сталей с учётом размеров образцов. Сообщ. 1. Результаты экспериментальных исследований / В.Т. Трощенко, В.В. Покровский, В.Г. Каплуненко // Пробл. прочности. – 1997. – № 1. – С. 5-25.

2. ГОСТ 25.506-85. Методы механических испытаний металлов. Определение характеристик трещиностойкости (вязкости разрушения) при статическом нагружении. – М.: Изд-во стандартов, 1985. – 61 с.

3. ASTM E 1820. Standard Test Method for Measurement of Fracture Toughness // Annual Book of ASTM Standards. – 1999, Vol. 03. 01. – 48 p.

4. Трощенко В.Т. Прогнозирование трещиностойкости теплоустойчивых сталей с учётом размеров образцов. Сообщ. 2. Вязкое разрушение / В.Т. Трощенко, В.В. Покровский, В.Г. Каплуненко // Пробл. прочности. – 1997. – № 2. – С. 5-18.

Поступила в редакцию 19.05.2010

Рецензент: д-р техн. наук, зав. отдела «Усталости и термоусталости материалов» Г.В. Цыбанёв, Институт проблем прочности им. Г.С.Писаренко НАН Украины, Киев, Украина.

ПРОГНОЗУВАННЯ ТЕМПЕРАТУРНОЇ ЗАЛЕЖНОСТІ В'ЯЗКОСТІ РУЙНУВАННЯ ЖАРОМІЦНОЇ СТАЛІ ТИПУ 12Cr-2Ni-Mo 3 ВРАХУВАННЯМ ЕФЕКТУ МАСШТАБУ

В.В. Покровський, С.Б. Кулішов, В.Г. Сідяченко, В.Н. Єжов, В.С. Замотаєв

Досліджено вплив температури і зразків на статичні характеристики тріщиностійкості жароміцної сталі типу 12Cr-2Ni-Mo. Показано, що в діапазоні температур від 20⁰ до 450⁰C збільшення товщини зразків призводить до незначного підвищення в'язкості руйнування, отриманої по 5% січної відповідно до стандартів щодо визначення характеристик тріщиностійкості. Розрахунок характеристик тріщиностійкості з врахуванням ефекту масштабу з використанням розробленій раніше розрахунково-експериментальній моделі для дослідженої сталі вказали на задовільну відповідність експерименту у всьому дослідженому діапазоні температур.

Ключові слова: тріщиностійкість, в'язкість руйнування, жароміцна сталь, коефіцієнт інтенсивності напружень, ефект масштабу.

PREDICTION OF TEMPERATURE DEPENDENCE OF FRACTURE TOUGHNESS OF HEAT-STRENGTH STEEL 12Cr-2Ni-Mo WITH THICKNESS EFFECT

V.V. Pokrovskiy, S.B. Kulishov, V.G. Sidyachenko, V.N. Ezhov, V.S. Zamotaev

An impact of samples' temperature and size on static characteristics of crack growth resistance of heat-strength steel 12Cr-2Ni-Mo has been investigated. It has been shown that samples thickness increase in the temperature range from 20° to 450° C will cause insignificant rise in fracture toughness. Computation of a crack growth resistance, considering the thickness effect for the steel was performed on a previously developed computation and experimental model and showed a satisfactory compliance with the experimental data in all investigated temperature range.

Key words: crack growth resistance, fracture toughness, heat-strength steel, stress intensity factor, effect of thickness.

Покровский Владимир Викторович – д-р техн. наук, ведущий научный сотрудник отдела высокочастотных методов исследования прочности и дефектности материалов Института проблем прочности им. Г.С.Писаренко, Киев, Украина.

Кулишов Сергей Борисович – начальник отдела динамики и прочности Государственного предприятия Научно-производственный комплекс газотурбостроения «Зоря»-«Машпроект», Николаев, Украина.

Сидяченко Вячеслав Григорьевич – канд. техн. наук, старший научный сотрудник отдела высокочастотных методов исследования прочности и дефектности материалов Института проблем прочности им. Г.С.Писаренко, Киев, Украина.

Ежов Виталий Николаевич – канд. техн. наук, старший научный сотрудник отдела высокочастотных методов исследования прочности и дефектности материалов Института проблем прочности им. Г.С.Писаренко, Киев, Украина.

Замотаев Владимир Степанович – ведущий инженер отдела высокочастотных методов исследования прочности и дефектности материалов Института проблем прочности им. Г.С.Писаренко, Киев, Украина.