УДК 624.318

Ю.В. БАТЫГИН, А.В. ГНАТОВ, Е.А.ЧАПЛЫГИН, Т.В. ГАВРИЛОВА

Харьковский национальный автомобильно-дорожный университет, Украина

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПРОЦЕССОВ ВОЗБУЖДЕНИЯ ВИХРЕВЫХ ТОКОВ В МАССИВНЫХ ПРОВОДНИКАХ ПОЛЕМ «РАЗОМКНУТОГО» ВИТКА

В рамках статьи проведено описание экспериментальных исследований пространственного распределения вихревых токов, возбуждаемых полем плоского «разомкнутого» кругового витка в индукторных системах с немагнитными идеально проводящими металлическими объектами. В ходе экспериментальных исследований использовались круговые индукторы без разреза и с разрезом 90°. Полученные экспериментальные зависимости радиального распределения азимутальной составляющей индуцированного тока и азимутального распределения радиальной составляющей индуцированного тока сопоставлены с расчетными данными.

Ключевые слова: магнитно-импульсная обработка металлов, индукторная система, напряжённость магнитного поля, электромагнитные процессы, индуцированный ток, вихревые токи.

Введение

Магнитно-импульсная обработка металлов широко используется в современной промышленности. Основными операциями, которые используют данную технологию, являются магнитно-импульсная штамповка, «холодная» сварка, рихтовка металлический элементов обшивки автомобилей и самолетов. Например фирмы «Boeing», «Electroimpact» и «Fluxtronic» активно используют магнитноимпульсные технологии для восстановления корпусных элементов самолетов (рис. 1).

Широко распространённые инструменты магнитно-импульсной обработки металлов – это плоские одновитковые соленоиды. В известных публикациях по электродинамическим расчётам последние представляются замкнутыми круговыми контурами, что позволяет ввести условие аксиальной симметрии и существенно упростить решение задачи о поле изолированного витка на поверхности металлического объекта (это может быть и проводящее полупространство, и тонкая пластина) [1].

В действительности виток не является замкнутым круговым контуром, поскольку он является элементом, последовательно включаемым в цепь источника мощности. То есть, реально, в качестве инструмента магнитно-импульсного метода имеет место виток «с разрезом» или «разомкнутый» виток. Очевидно, что нарушение аксиальной симметрии формы источника поля (индуктора) ведёт к искажению силового воздействия на обрабатываемый объект. Последний фактор может объяснить многие неудачные применения электромагнитных полей для решения насущных технологических задач.

Рис. 1. Магнитно-импульсный комплекс фирмы «Boeing»

Теоретическому анализу электромагнитных процессов индукторной системе с «разомкнутым витком», расположенным над поверхностью идеально проводящего металла, посвящена работа [2]. Здесь классическим методом выполнено аналитическое решение соответствующей электродинамической задачи, проведены численные оценки, построены наглядные графические зависимости, на-

© Ю.В. Батыгин, А.В. Гнатов, Е.А.Чаплыгин, Т.В. Гаврилова

глядно иллюстрирующие влияние разреза в витке на распределение возбуждаемых полей и токов.

Однако, любые, пусть даже самые строгие, теоретические исследования должны апробироваться на предмет адекватности описываемым процессам. Степень достоверности полученных результатов устанавливается измерениями основных характеристик исследуемых явлений.

Цель настоящей работы – экспериментальные исследования пространственного распределения вихревых токов, возбуждаемых полем плоского «разомкнутого» кругового витка в индукторных системах с немагнитными идеально проводящими металлическими объектами.

Постановка задачи исследования

Схема эксперимента представлена на рис. 2, где показаны выделенные линии, вдоль которых с помощью датчиков индукционного типа (рис. 3, [3]) проводились измерения тангенциальной и азимутальной составляющих напряжённости магнитного поля (взаимно перпендикулярные оси – XX и YY).

Рис. 2. Схема эксперимента (токопроводы подключения витков к генератору токовых импульсов – перпендикулярны к их плоскости):

а – виток индуктора «без разреза» ($\sim 6^0$);

б – виток индуктора «с разрезом» (~90⁰)

Витки с разрезами разной величины в терминах азимутального угла составляли $\sim 6^{\circ}$ и $\sim 90^{\circ}$ были выполнены из медной проволоки диаметром ~ 0.001 м (рис.4).

Источником токовых импульсов служил генератор низковольтного напряжения, описанный в работе [4]. В качестве «идеально» проводящего объекта была взята достаточно толстая медная пластина толщиной ~ d≈0,01 м. Расстояние от витка до её плоскости составляло ~ h≈0,0025 м. При рабочей частоте ~ f≈30 кГц эффективная глубина проникновения поля будет равна ~ Δ ≈0,000375 м. Если учесть эту величину в качестве поправки к расстоянию между витком и пластиной ~ (h+ Δ)≈0,002875 м, то металл последней можно считать «идеально» проводящим.

Рис. 3. Система для измерения тангенциальной компоненты напряжённости магнитного поля – плотности тока, индуцированного в металле массивного проводника, а – конструктивное исполнение с выводом к осциллографу; б – собственно индукционный датчик, катушка индуктивности

В этом случае на поверхности объекта исследования (медной пластины) тангенциальная составляющая модуля вектора напряжённости магнитного поля будет равна модулю вектора плотности азимутальной компоненты индуцированного тока. А модуль азимутальной составляющей вектора напряжённости будет равен радиальной компоненте вектора плотности возбуждаемого тока. В полярной системе координат, привязанной в исследуемой индукторной системе это означает, что $H_r \approx j_{\phi}$ и

$$H_{\phi} \approx j_r$$

Типичная осциллограмма измеряемого сигнала показана на рис. 5.

Для обработки результатов измерений выпишем из работы [2] необходимые зависимости для компонент вектора плотности индуцированного тока:

а) азимутальная составляющая, нормированная на максимум,

Рис. 4. Экспериментальные образцы витков с «разрезами»: а – виток индуктора «без разреза» (~6⁰); б – виток индуктора «с разрезом» (~90⁰)

Рис. 5. Типичная осциллограмма тока, индуцированного в металле медной пластины

$$j_{\phi-\text{OTH}}\left(\frac{r}{R},\phi\right) = \sum_{n=0}^{\infty} F_{n}(\phi_{0})\cos\left(n\phi\right) \left[\int_{0}^{\infty} f_{n}(x) \times \left(J_{n-1}\left(x\frac{r}{R}\right) - J_{n+1}\left(x\frac{r}{R}\right)\right)e^{-x\cdot\frac{h}{R}} dx\right],$$
(1)

б) радиальная составляющая, нормированная на максимум,

$$\begin{split} j_{r-oTH}(\frac{r}{R},\phi) &= \sum_{n=1}^{\infty} n \cdot F_{n}(\phi_{0}) \cdot \sin(n \phi) \cdot \left[\int_{0}^{\infty} f_{n}(x) \times \right. \\ & \left. \times \frac{J_{n}\left(x \cdot \frac{r}{R}\right)}{\left(\frac{r}{R}\right)} \cdot \frac{e^{-x \cdot \frac{h}{R}}}{x} dx \right], \end{split} \tag{2}$$

$$r \text{ rge } F_{n}(\phi_{0}) &= \begin{cases} \left(-\frac{2 \cdot \sin(n \cdot \phi_{0})}{\pi \cdot n} \right), \ n \neq 0, \\ \left. \left(1 - \frac{\phi_{0}}{\pi} \right), \ n = 0, \end{cases}$$

$$\mathbf{f}_{n}(\mathbf{x}) = \frac{\mathbf{x}}{4} \cdot \left[\mathbf{J}_{n-1}(\mathbf{x}) - \mathbf{J}_{n+1}(\mathbf{x}) \right].$$

Экспериментальные и расчетные данные

Результаты измерений и расчётные данные, вычисленные с помощью формул (1) и (2), оформленные в виде графических зависимостей в относительных единицах с нормировкой на соответствующие максимумы, представлены на рис. 6, 7, 8 (нормировка на максимум, расчёт по формуле (1, 2)).

Анализ полученных результатов приводит к следующим выводам.

1. В зоне под разрезом в витке действительно имеет место существенное нарушение однородности пространственного распределения плотности индуцированных токов и снижение их амплитудных значений, что делает недопустимым приближение аксиальной симметрии в расчётах одновитковых индукторных систем.

Рис. 6. Радиальные распределения азимутальной составляющей тока, индуцированного в металле массивного медного образца, вдоль оси XX: ■ – измерения; _____ – расчет, а – виток индуктора «без разреза» (~6⁰); б – виток индуктора «с разрезом» (~90⁰)

Рис. 7. Радиальные распределения азимутальной составляющей тока, индуцированного в металле массивного медного образца, вдоль оси YY: ■ – измерения; ______ – расчет, а – виток индуктора «без разреза» (~6⁰); б – виток индуктора «с разрезом» (~90⁰)

Рис. 8. Азимутальное распределение радиальной составляющей тока, индуцированного в металле массивного медного образца, витком «с разрезом» (~90⁰): ■ – измерения; _____ – расчет

2. Нарушение аксиальной симметрии (виток с разрезом) есть причина появления радиальной составляющей индуцированного тока, пространственные максимумы радиальных токов располагаются вблизи краёв разреза в витке и имеют разные знаки, что говорит об их протекании в противоположных направлениях.

3. В целом, сравнение графиков различных компонент вектора плотности индуцированных токов показывает, что пространственная форма полного индуцированного тока формируется, в основном, вкладом азимутальной составляющей.

Выводы

1. Проведены экспериментальные исследования процессов электродинамического возбуждения вихревых токов полем цилиндрического витка с радиальным разрезом в металле с высоким значением удельной электропроводности.

2. Показано, что:

 в зоне под разрезом в витке имеет место существенное нарушение однородности пространственного распределения плотности индуцированных токов, делающее недопустимым аксиальное приближение в расчётах одновитковых индукторных систем для магнитно-импульсной обработки металлов;

 интегральная величина вектора плотности индуцированного тока формируется, в основном, вкладом его азимутальной составляющей.

Литература

1. Батыгин, Ю.В. Импульсные магнитные поля для прогрессивных технологий [Текст]/ Ю.В. Батыгин, В.И. Лавинский, Л.Т. Хименко; под ред. Ю.В. Батыгина. – 2-е изд. – Харьков: МОСТ– Торнадо, 2003. – Т.1. – 284 с.

2. Батыгин, Ю.В. Цилиндрический виток конечной ширины с разрезом над идеально проводящим массивным проводником [Текст]/ Ю.В. Батыгин, А.В. Гнатов, Д.О. Смирнов // Електротехніка і електромеханіка. – 2011. – №2. – С. 56 – 60.

3. Батыгин, Ю.В. Магнитно-импульсная обработка тонкостенных металлов [Текст]/ Ю.В. Батыгин, В. И. Лавинский. – Харьков: МОСТ – Торнадо, 2002. – Т.2. Импульсные магнитные поля для прогрессивных технологий. – 288с.

4. Бондаренко, А.Ю. Низковольтный генератор импульсов тока широкого частотного диапазона для физического моделирования [Текст]/ А.Ю. Бондаренко, Г.С. Сериков, Е.А. Чаплыгин // Електротехніка і електромеханіка. – 2007. – №6. – С. 66–69.

Поступила в редакцию 27.01.2012

Рецензент: д-р техн. наук, профессор, профессор каф. технологий производства летательных аппаратов М.Е. Тараненко, Национальный аэрокосмический университет им. Н.Е.Жуковского «ХАИ», Харьков.

ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ ПРОЦЕСІВ ЗБУДЖЕННЯ ВИХРОВИХ СТРУМІВ У МАСИВНИХ ПРОВІДНИКАХ ПОЛЕМ «РОЗІМКНУТОГО» ВИТКА

Ю.В. Батигін, А.В. Гнатов, Є.О. Чаплигін, Т.В. Гаврилова

У рамках статті проведено опис експериментальних досліджень просторового розподілу вихрових струмів, що збуджуються полем плоского «розімкнутого» кругового витка в індукторних системах з немагнітними ідеально провідними металевими об'єктами. У ході експериментальних досліджень використовувалися кругові індуктори без розрізу й з розрізом 90°. Отримані експериментальні залежності радіального розподілу азимутальної складової індукованого струму та азимутального розподілу радіальної складової індукованого струму зіставлені з розрахунковими даними.

Ключові слова: магнітно-імпульсна обробка металів, індукторна система, напруженість магнітного поля, електромагнітні процеси, індукований струм, вихрові струми.

EXPERIMENTAL RESEARCHES OF PROCESSES OF EXCITATION OF VORTICAL CURRENTS IN MASSIVE CONDUCTORS THE FIELD OF THE "OPENED" COIL

Yu.V. Batygin, A.V. Gnatov, E.A. Chaplygin, T.V. Gavrilova

This article contains the description of experimental researches of spatial distribution vortical currents induced by field of flat "open-ended» circular coil in inductor systems with nonmagnetic metal objects having perfect conductivity. During experimental researches circular inductor were used without a branch cut and with a branch cut 90°. The experimental dependences of radial distribution of an azimuth component of the induced current and azimuth distribution of a radial component of the induced current have been obtained. These dependences are compared to calculation data.

Key words: Magnetic-pulse processing of metals, inductor system, intensity of a magnetic field, the electromagnetic processes, the induced current, the vortical currents.

Батыгин Юрий Викторович – д-р техн. наук, проф., зав. кафедрой физики, Харьковский национальный автомобильно-дорожный университет, Харьков, Украина.

Гнатов Андрей Викторович - канд. техн. наук, доц., докторант каф. автомобильной электроники, Харьковский национальный автомобильно-дорожный университет, Харьков, Украина.

Чаплыгин Евгений Александрович – канд. техн. наук, доц., доцент кафедры физики, Харьковский национальный автомобильно-дорожный университет, Харьков, Украина.

Гаврилова Татьяна Владимировна – канд. физ.-мат. наук, доц., доцент кафедры физики, Харьковский национальный автомобильно-дорожный университет, Харьков, Украина.