УДК 629.7

В.А. КОВАЛЕНКО

ГП «Конструкторское бюро «Южное» им. М.К. Янгеля», Днепропетровск, Украина

ИССЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ДЕФЕКТОВ, ВОЗНИКАЮЩИХ В ПРОИЗВОДСТВЕ АГРЕГАТОВ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ. СООБЩЕНИЕ 1. ДОПУСКИ НА ОТКЛОНЕНИЯ ТОЛЩИНЫ ФОРМИРУЕМОГО ИЗДЕЛИЯ ОТ ПРОЕКТНОГО ЗНАЧЕНИЯ

На основе математических моделей теории армирования однонаправленных структур и структур, армированных в трех направлениях (0° , $\pm \varphi$, 90°), получены зависимости для обоснованного назначения полей допусков для физико-механических и прочностных характеристик полимерных композиционных материалов в результате изменения толщины формуемого полуфабриката (препрега) и изделия. Полученные зависимости позволяют оценить качество технологических процессов формования полуфабрикатов и изделий из полимерных композиционных материалов по уровню геометрического вида дефекта данного класса.

Ключевые слова: полимерный композиционный материал, технологический процесс формования, дефекты отклонения толщины изделия, поля допусков.

Введение

В нашей работе [1] показано, что немалозначимыми составляющими комплексной программы научного обеспечения создания высокоэффективных агрегатов ракетно-космической техники из полимерных композиционных материалов (ПКМ) являются разработка методов и способов оценивания точности (качества) реализации технологических процессов производства агрегатов из этих материалов путем выявления возникающих дефектов и анализа их влияния на эксплуатационные характеристики изделий. В разное время рядом авторов обсуждались различные виды этих дефектов [2 - 9].

В работе [9] предложен многоуровневый классификатор дефектов, возникающих в производстве интегральных конструкций авиакосмической техники (АКТ) из ПКМ, включающий в себя 8 видов дефектов и 24 их класса, а также характеристики технологических операций, причины их возникновения и проявления и конечный характер влияния. В [9] отмечается, что предложенный многоуровневый классификатор позволит проводить анализ влияния всех видов дефектов и их классов на базе соответствующих математических моделей, направленных на поиск обоснованных полей допусков с целью прогнозирования технологических возможностей производства прогрессивных интегральных конструкций АКТ из ПКМ, а также динамики их снижения по мере освоения изделия. Именно эта объемная проблема ждет своего решения.

Допуски на отклонения толщины формируемого изделия от проектного значения

В связи с этим в настоящей статье сделана попытка рассмотреть один класс вида геометрических дефектов, возникающих в производстве конструкций АКТ из ПКМ – несоответствие ее толщины проектной, возникающее на технологических операциях пропитки препрега связующим или при формировании паковки, проявляющееся после ее формования и снижающее физико-механические характеристики (ФМХ) ПКМ в локальной зоне появления этого дефекта и несущую способность изделия (рис. 1).

Толщина формируемого изделия из ПКМ складывается из количества монослоев армирующего материала

$$\delta = \delta_0 n , \qquad (1)$$

где п – число слоев ленты, ткани или препрега.

Толщина монослоя δ_0 зависит от технологии формирования паковки и исходного состояния монослоя [7 - 8].

Если формирование ведется из пропитанной связующим ленты – препрега, то в ней в пределах допуска должно быть реализовано объемное содержание волокон $\theta_{\rm B}$ и связующего $\theta_{\rm c}$. В противном случае возникает дефект «отклонение толщины от номинала δ ». Дефект обнаруживается либо до начала формирования изделия на стадии входного контроля, либо в готовом изделии.

Рис. 1. Фрагмент классификатора дефектов, возникающих в производстве интегральных конструкций АКТ из полимерных КМ

В первом случае он вызван нарушением регламентов пропитки полуфабриката (препрега), связанным с отклонением режимов «давление – время» $(p-\tau)$, «температура – время» $(T-\tau)$, совместного нарушения режима $(p, T-\tau)$ или отклонением скорости пропитки $(v_{проп})$, т.е. режима « τ ».

При этом наиболее вероятно при любом нарушении утолщение препрега, т.е. +6 за счет приращения относительного объемного содержания связующего θ_c , так как сдавливание волокон невозможно. Единичное сечение фрагмента толщины препрега имеет вид, показанный на рис. 2.

Нормальное поперечное сечение имеет погрешность, соответствующую допуску, гарантированному поставщиком армирующего полуфабриката $\Delta \delta$.

Рис. 2. Возможные виды поперечного сечения препрега после пропитки: $a - нормальное: \Delta \delta = 0, \Delta \Theta_c = 0;$

 $\delta - c$ утонением: $\Delta \delta < 0$, $\Delta \theta_c < 0$;

в – с утолщением:
$$\Delta \delta > 0$$
, $\Delta \theta_c > 0$

Этот допуск связан с отклонением линейной плотности армирующего полуфабриката (количеством нитей на 10 см ширины) и, как следствие, с объемным содержанием армирующего полуфабриката $\theta_{\rm B}$ при контрольном (паспортном) изготовлении однонаправленного препрега. В качестве примера эти допуски приведены для углеродных лент [10] и углеродных лент и тканей на эпоксидном препреге (таблицы 1 и 2)

Легко устанавливается связь между приращениями толщины и относительным объемным содержанием волокон и связующего.

Объем единичного конструктивного элемента (КЭ) равен

$$V = \delta \cdot 1 \cdot 1 . \tag{2}$$

Приращение объема единичного КЭ

 $\Delta \mathbf{V} = \Delta \delta \cdot \mathbf{1} \cdot \mathbf{1} \,. \tag{3}$

Таблица 1

Свойства углеродных лент и однонаправленных эпоксидных углеволокнитов на их основе

Тип ленты	Ширина ленты, мм	Линейная плотность, м/г	Плотность нити в ленте, г/см ³	Количество нитей на10 см, не менее	Свойства эпоксидного углеволокнита						
					р, г/см ³	Содержание наполнителя, % об.	σ _{ви} , ГПа	σ _{вр} , ГПа	Е _{ви} ,. ГПа	Толщина монослоя, мм	
ЛУ ЛУ-П	255±25	35±3	1,69	460	1,53	63±4	-	-	165±20	0,10±0,01 0,13±0,02	
ЛУ-П-0,1-А	255±20	30±5	1,69	460±25	1,49	62±4	0,7	0,7	157±25	0,10,12	
ЛУ-П-0,1-Б	255±20	30±5	1,69	460±25	1,49	62±4	0,6	0,7	157±25	0,10,12	
ЛУ-П-0,2-А	255±20	30±5	1,69	485±25	1,49	62±4	0,7	0,7	157±25	0,110,15	
ЛУ-П-0,2-Б	255±20	30±5	1,69	485±25	1,49	62±4	0,6	0,7	157±25	0,110,15	
ЭЛУР-П-А	245±30	30±5	1,71	420±25	1,50	63±4	0,9	0,9	145 ±(2025)	0,110,13	
ЭЛУР-П-Б	245±30	30±5	1,71	420±25	1,50	63±4	0,8	0,8	145 ±(2025)	0,110,13	
ЭЛУР-0,08 П-А	220±30	15±5	1,71	570±25	1,50	63±4	0,9	0,9	145 ±(2025)	0,070,109	

Таблица 2

Свойства углеродных лент и тканей и эпоксидных углепластиков (связующее ЭНФБ, КМУ-4) на их основе

Показатели свойств	Ленты и ткани										
	VOП-300-1	УОЛ-300-2	УОЛ- 300-1К	УОЛ- 300-2К	ЛЖУ-0,25П	ЛЖУ-0,32П	УТ-900-2,5				
	5 051-500-1						Марка А	Марка Б	Марка В		
Линейная плотность, г/м	80±5	62±5	73±3	58±3	68±10	100±30	240±30	240±30	240±30		
Плотность на 10 см											
по основе	62 ± 1 10+1	100 ± 1 10+1	60 ± 1 10+1	100 ± 1 10+1	107±1	85±1	60 ± 2 60 ± 2	60 ± 2 60 ± 2	60 ± 2 60 ± 2		
по утку Углепластики:	10±1	10±1	10±1	10±1			0012	0012	0012		
σ_p , МПа	11001400	12001500	11501300	11501400	12001300	12001300	400	550	600		
$\sigma_{_{\!H}},$ МПа	9501100	10001200	8001000	9001100	8001000	8001000	400	550	600		
Толщина монослоя, мм	0,235±0,015	0,175±0,015	0,235±0,015	0,175±0,015	0,22±0,03	0,32±0,04	0,22±0,02	0,22±0,02	0,22±0,02		

Объем единичного КЭ состоит из объемов волокон и связующего:

$$V = V_{\rm B} + V_{\rm c} \,. \tag{4}$$

Соответственно из (2) и (4) следует, что $\delta = V_{\rm B} + V_{\rm C} \; . \label{eq:delta_state}$

Δ

В общем случае

$$\delta = \Delta V_{\rm B} + \Delta V_{\rm c} \,. \tag{6}$$

(5)

Разделив (6) на (2), получим

$$\frac{\Delta\delta}{V} = \frac{\Delta\delta}{\delta} = \frac{\Delta V_{\rm B}}{V} + \frac{\Delta V_{\rm c}}{V}$$

или

$$\Delta \overline{\delta} = \Delta \theta_{\rm B} + \Delta \theta_{\rm c} \,. \tag{7}$$

Известно, что

 $\theta_{\rm B} + \theta_{\rm c} = 1.$ (8)

В то же время

 $(\theta_{\rm B} \pm \Delta \theta_{\rm B}) + (\theta_{\rm c} \pm \Delta \theta_{\rm c}) = 1 \pm (\Delta \theta_{\rm B} + \Delta \theta_{\rm c}).$

Искомая связь между $\Delta \delta$ и приращениями $\Delta \theta_{\rm B}$ и $\Delta \theta_{\rm c}$ следует из (7):

$$\Delta \delta = \left(\Delta \theta_{\rm B} + \Delta \theta_{\rm c} \right) \delta \,. \tag{9}$$

Анализируя табл. 1, легко установить, например для препрега на основе ленты ЛУ:

 $\Delta \delta = \pm 0,01$ мм при $\delta = 0,1$ мм, $\theta_{\rm B} = 0,63\pm0,04$, где $\Delta \theta_{\rm B} = \pm 0,04$. Из (10) получим $\Delta \theta_{\rm C} = \pm 0,06$.

Следовательно, возможен случай, когда при $\Delta \theta_{\rm B} = 0,04$, $\Delta \theta_{\rm c} = 0,06 \ (\theta_{\rm B} + \theta_{\rm c}) + (\Delta \theta_{\rm B} + \Delta \theta_{\rm c}) = 1,1$ и $(\theta_{\rm B} + \theta_{\rm c}) - (\Delta \theta_{\rm B} + \Delta \theta_{\rm c}) = 0,9.$

Таким образом, поле допуска на препрег из данной ленты составляет по объемному содержанию волокон $\theta_{\rm B} = 0.63^{+0.04}_{-0.04}$, а по связующему $\theta_{\rm c} = 0.37^{+0.06}_{-0.06}$.

А в общем случае $\theta_{\rm B} = \theta_{\rm B \, nacn}^{+\Delta \theta_{\rm B \, n}}$, $\theta_{\rm c} = \theta_{\rm c \, nacn}^{+\Delta \theta_{\rm c \, n}}$. При этом $\Delta \delta_0 = \delta_0 \left(\Delta \theta_{\rm B \, n} + \Delta \theta_{\rm c \, n} \right)$, где $\Delta \theta_{\rm B \, n}$ и $\Delta \theta_{\rm c \, n}$ – паспортные значения приращений $\Delta \theta_{\rm B}$ и $\Delta \theta_{\rm c}$.

При изготовлении препрега с паспортным полем допусков значение $\Delta \theta_{\rm B}$ всегда находится в интервале $-\Delta \theta_{\rm B\Pi} \leq \Delta \theta_{\rm B} \leq \Delta \theta_{\rm B\Pi}$, в то время как $\Delta \theta_{\rm C}$ может выходить за пределы интервала паспортных значений:

$$-\Delta \theta_{c\pi} \le \Delta \theta_c \le \Delta \theta_{c\pi}, \qquad (10)$$

что имеет место при выходящем за регламентное значение давлении между валками при прокатке препрега (перепрессовка) $p_{Ban} > [p_{Ban}]$ либо при повышенной вязкости связующего в момент пропитки $\eta_c > [\eta_c]$.

Вязкость связующего может быть выше регламентной, если температура прокатки меньше регламентированной $T < [T_{np}]$. Наконец, неравенство (9) может также иметь место, если в процессе прокатки армирующего полуфабриката между валками скорость $V_{np} < [V_{np}]$.

Итак, (10) может иметь место:

- при $p_{\text{вал}} = [p_{\text{вал}}],$ но $T < [T_{\text{пр}}]$ (причина – низкая T), т. к. при этом $\eta_c > [\eta_c];$

- при $p_{Ba\pi} > [p_{Ba\pi}], T = [T_{np}]$ (причина – высокое $p_{Ba\pi}$);

- при $p_{вал} < [p_{вал}]$, но $T > [T_{np}]$ (причина – заброс T), т. к. при этом $\eta_c < [\eta_c]$.

Неравенство (10) имеет место при

$$\Delta \delta_0 = \delta_0 (\Delta \theta_{BH} - \Delta \theta_c),$$

где $\Delta \theta_{B\Pi}$ – паспортное значение $\Delta \theta_{B}$;

 $\Delta \theta_{c}$ – значение $\Delta \theta_{c}$ в результате прокатки армирующего полуфабриката (препрега).

При недопрессовке

$$\Delta \theta_{\rm c} > \Delta \theta_{\rm c\,\Pi} \,, \tag{11}$$

что имеет место, если:

- при $p_{Ba\pi} < [p_{Ba\pi}], T = [T_{\pi p}]$ (причина – низкое $p_{Ba\pi}$);

- при $p_{Ban} = [p_{Ban}], T < [T_{np}]$ (причина – низкая T), при этом $\eta_c > [\eta_c]$.

Соответствие непропитанного армирующего наполнителя паспортным данным проверяется при входном контроле взвешиванием партии его образцов длиной 1 м при заданной ширине ($b \mp \Delta b$). Разделив среднюю массу партии образцов на площадь $S = (b \pm \Delta b)(1 \pm \Delta)$, где Δ – допуск на отрезаемую ширину образца в 1 м, получим линейную плотность ($\rho_{\pi} \mp \Delta \rho_{\pi}$), соответствующую регламентируемой в паспорте на поставку армирующего материала. Линейная плотность ($\rho_{\pi} \mp \Delta \rho_{\pi}$) должна соответствовать регламентированному в паспорте значению. Если она меньше этого значения (масса образца больше регламентного значения), значит количество нитей на 10 см ширины превышает его паспортное значение и наоборот.

Например, для ленты ЛУ $[\rho_{\pi} \mp \Delta \rho_{\pi}] = 35 \pm 3$ м/г. При входном контроле партии образцов оказалось, что $(\rho_{\pi} \mp \Delta \rho_{\pi}) = 35 \pm 8$ м/г. Следовательно, количество нитей в ленте превышает соответствующее паспорту значение 460 штук на 10 см.

Известно, что увеличение относительного объемного содержания волокон в ПКМ повышает его ФМХ, если это значение $\theta_{\rm B} < \theta_{\rm вкрит}$. При достижении $\theta_{\rm вкрит}$ ПКМ перестает быть монолитным, так как относительного объемного содержания связующего $\theta_{\rm c} = (1 - \theta_{\rm B})$ не будет достаточно для полного покрытия поверхности волокон.

В связи с этим превышение линейной плотности над паспортным значением, как правило, является недопустимым, так как поставщик стремится обеспечить $\theta_{\rm B}$, максимально приближающееся к $\theta_{\rm B \ K \ P \ U}$ (по-видимому, $\theta_{\rm B \ max} = [\theta_{\rm B} + \Delta \theta_{\rm B}]$), то есть для ЛУ $\theta_{\rm B \ max} = (63+4)\%$.

При $(\rho_{\pi} \mp \Delta \rho_{\pi}) > [\rho_{\pi} \mp \Delta \rho_{\pi}]$, например для ЛУ $(\rho_{\pi} \mp \Delta \rho_{\pi}) = 34\pm 6$ м/г ФМХ ПКМ будут ниже гарантированных паспортом, например $E_{\mu_3} < (165\pm 20)$ ГПа (см. табл. 1).

Если потребителю поставляется препрег, в паспорте указывается регламентируемое значение его толщины при формовании монослоя $[\delta_0 \pm \Delta \delta_0]$ и ожидаемые (гарантируемые) ФМХ ПКМ.

Так, например, для эпоксидного углепластика ЛУ-П-0,1-А (см. табл. 1) гарантируется при $[\delta_0 \pm \Delta \delta_0] = 0,1...0,12$ мм пределы прочности при растяжении $\sigma_B = 0,7$ ГПа и при сжатии $\sigma_{-B} = 0,7$ ГПа и модуль упругости при изгибе $E_{\mu3} = 157 \pm 25$ ГПа. При этом $[\theta_B + \Delta \theta_B] = (62 \pm 4) \% = 0,62 \pm 0,4.$

При входном контроле соответствие паспортным характеристикам проверяется испытанием изготовленных из поставляемого препрега партии образцов по технологии, обеспечивающей $[\theta_{\rm B} \pm \Delta \theta_{\rm B}]$ путем реализации их толщины, равной

$$\delta = \left(\delta_0 \pm \Delta \delta_0\right) \mathbf{n} \,,$$

где n – число монослоев и соответствующих паспортному значению ФМХ ПКМ с предусмотренными для них допусками (см. табл. 1 и 2).

ФМХ однонаправленного ПКМ определяются по приближенным формулам на основе теории армирования [11, 12] с добавлением в них приращений соответствующих характеристик в пределах их паспортного интервала допусков.

Модуль упругости однонаправленного ПКМ вдоль волокон

$$\begin{pmatrix} E_{X KM} \pm \Delta E_{X KM} \end{pmatrix} = E_{B}^{+\Delta E_{B}^{T}} \cdot \theta_{B}^{+\Delta \theta_{B}^{T}} + E_{C}^{+\Delta E_{C}^{T}} \begin{pmatrix} 1 - \theta_{B}^{+\Delta \theta_{B}^{T}} \\ -\Delta \theta_{B}^{T} \end{pmatrix}.$$

$$(12)$$

Коэффициент Пуассона при растяжениисжатии вдоль волокон

$$\begin{pmatrix} v_{XYKM} \pm \Delta v_{XYKM} \end{pmatrix} = v_{B}^{+\Delta v_{B}^{\Pi}} \cdot \theta_{B}^{+\Delta \theta_{B}^{\Pi}} + v_{c}^{+\Delta v_{c}^{\Pi}} \begin{pmatrix} 1 - \theta_{B}^{+\Delta \theta_{B}^{\Pi}} \\ -\Delta \theta_{B}^{\Pi} \end{pmatrix}.$$
(13)

Предел прочности при растяжении-сжатии вдоль волокон:

- для хрупких связующих (при $\varepsilon_{\text{пред c}} < \varepsilon_{\text{пред в}}$)

$$\begin{pmatrix} \sigma_{\text{BX KM}} \pm \Delta \sigma_{\text{BX KM}} \end{pmatrix} = \\ = \frac{\sigma_{\text{BC}}^{+\Delta\sigma_{\text{BC}}^{\Pi}}}{E_{\text{C}}^{+\Delta\text{E}_{\text{C}}^{\Pi}}} \begin{bmatrix} E_{\text{B}}^{+\Delta\text{E}_{\text{B}}^{\Pi}} \cdot \theta_{\text{B}}^{+\Delta\theta_{\text{B}}^{\Pi}} \\ E_{\text{C}}^{+\Delta\text{E}_{\text{C}}^{\Pi}} \end{bmatrix} + \\ + E_{\text{C}}^{+\Delta\text{E}_{\text{C}}^{\Pi}} \left(1 - \theta_{\text{C}}^{+\Delta\theta_{\text{B}}^{\Pi}} \right) \approx \\ \approx \sigma_{\text{BC}}^{+\Delta\sigma_{\text{BC}}^{\Pi}} \left(\frac{1 - \theta_{\text{C}}^{+\Delta\theta_{\text{B}}^{\Pi}}}{E_{\text{C}}^{+\Delta\text{E}_{\text{C}}^{\Pi}}} \right) \approx$$
(14)

- для пластичных связующих (при $\epsilon_{\text{пред c}} > \epsilon_{\text{пред b}}$)

$$(\sigma_{\text{BX KM}} \pm \Delta \sigma_{\text{BX KM}}) =$$

$$= \frac{\sigma_{\text{BB}}^{+} \Delta \sigma_{\text{BB}}^{\pi}}{E_{\text{B}}^{+} \Delta E_{\text{B}}^{\pi}} \left[E_{\text{B}}^{+} \Delta E_{\text{B}}^{\pi} \cdot \theta_{\text{B}}^{+} \Delta \theta_{\text{B}}^{\pi}} \right] +$$

$$+ E_{\text{c}}^{+} \Delta E_{\text{c}}^{\pi}} \left(1 - \theta_{\text{B}}^{+} \Delta \theta_{\text{B}}^{\pi}} \right) \approx$$

$$\approx \sigma_{\text{BB}}^{+} \Delta \sigma_{\text{BB}}^{\pi}} \frac{\left(E_{\text{X KM}} \pm \Delta E_{\text{X KM}} \right)}{E_{\text{B}}^{+} \Delta E_{\text{B}}^{\pi}} \right).$$

$$(15)$$

В формулах (12) – (15) обозначено: E_c, v_c, σ_{Bc} - модуль упругости, коэффициент Пуассона и предел прочности связующего (матрицы); E_B, v_B, σ_{BB} - модуль упругости, коэффициент Пуассона и предел прочности волокна; $\pm R^n$ - паспортное отклонение R -го свойства в допустимом диапазоне.

Модуль сдвига однонаправленного ПКМ $G_{xy \, \text{км}}$ и предел его прочности на сдвиг $\tau_{\text{в км} xy}$ определяются зависимостью

$$\begin{pmatrix} G_{XY KM} \pm \Delta G_{XY KM} \end{pmatrix} = \\ = \frac{G_{B_{-\Delta}G_{B}}^{+\Delta G_{B}} \cdot G_{c_{-\Delta}G_{c}}^{+\Delta G_{c}}}{G_{c_{-\Delta}G_{c}}^{+\Delta G_{c}} \theta_{B_{-\Delta}\theta_{B}}^{+\Delta \theta_{B}} + G_{B_{-\Delta}G_{B}}^{+\Delta G_{B}} \left(1 - \theta_{B_{-\Delta}\theta_{B}}^{+\Delta \theta_{B}}\right)}.$$
(16)

Так как волокна армирующего материала и матрица изотропны, что позволяет считать

$$G_{B} = \frac{E_{B}}{2(l + v_{B})}$$
 и $G_{c} = \frac{E_{c}}{2(l + v_{c})}$, и кроме того в пас-

портах на армирующие материалы и связующее чаще приводятся допуски на их модули упругости и коэффициенты Пуассона, чем на G_в и G_с вместо формулы (16) лучше пользоваться аналогом этой формулы:

$$\begin{pmatrix} G_{XYKM} \pm \Delta G_{XYKM} \end{pmatrix} = \\ = \frac{1}{2} E_{B}^{+\Delta E_{B}^{n}} \cdot E_{c}^{+\Delta E_{c}^{n}} \times \\ \times \begin{bmatrix} E_{B}^{+\Delta E_{B}^{n}} (1 - \theta_{B}^{+\Delta \theta_{B}^{n}}) (1 + v_{c}^{+\Delta v_{c}^{n}}) + \\ E_{c}^{+\Delta E_{c}^{n}} (1 + v_{B}^{+\Delta v_{B}^{n}}) (1 + v_{c}^{+\Delta v_{c}^{n}}) + \\ E_{c}^{+\Delta E_{c}^{n}} (1 + v_{B}^{+\Delta v_{B}^{n}}) (\theta_{B}^{+\Delta \theta_{B}^{n}}) - \Delta \theta_{B}^{n} \end{bmatrix}^{-1} .$$
(17)
$$(17) = \tau_{BB}^{+\Delta \tau_{BB}^{n}} \left[\theta_{B}^{+\Delta \theta_{B}^{n}} + \frac{E_{c}^{+\Delta E_{c}^{n}} (1 + v_{B}^{+\Delta v_{B}^{n}})}{E_{B}^{+\Delta E_{c}^{n}} (1 + v_{B}^{+\Delta v_{B}^{n}})} \right] .$$
(18)

Модуль упругости однонаправленного ПКМ поперек волокон при растяжении-сжатии определяется формулой

$$\begin{pmatrix} E_{y \, \kappa M} \pm \Delta E_{y \, \kappa M} \end{pmatrix} \approx E_{B}^{+\Delta E_{B}^{n}}_{-\Delta E_{B}^{n}} \times \\ \times \left[\theta_{B}^{+\Delta \theta_{B}^{n}}_{-\Delta \theta_{B}^{n}} + \frac{E_{B}^{+\Delta E_{B}^{n}}_{-\Delta E_{B}^{n}}}{E_{c}^{+\Delta E_{c}^{n}}_{-\Delta E_{c}^{n}}} \left(1 - \theta_{B}^{+\Delta \theta_{B}^{n}}_{-\Delta \theta_{B}^{n}} \right) \right]^{-1}.$$
(19)

Предел прочности однонаправленного ПКМ поперек волокон при растяжении-сжатии с учетом формы волокна приближенно можно определить по формуле^{*)}:

$$\left(\sigma_{B \, y \, KM} \pm \Delta \sigma_{B \, y \, KM}\right) = 0.7 \sigma_{BC}^{+\Delta \sigma_{BC}^{\Pi}} . \qquad (20)$$

В случае формирования, а затем формования паковки из однонаправленных препрегов в замкнутой форме, не исключающей вытекание из нее связующего, ФМХ структуры, состоящей из трех направлений армирования^{**}): вдоль направления волокон $\phi_0 = 0^\circ$, под углом $\pm \phi$, поперек волокон $\phi_{90} = 90^\circ$ при количестве соответствующих этим углам монослоев n_0 , $2n_{\pm \phi}$, n_{90}

$$n_0 + 2n_{\pm \phi} + n_{90} = n$$

определяются формулами [12]:

$$(E_{x} \pm \Delta E_{x}) = \frac{1}{(\delta_{0} \pm \Delta \delta_{0})n} \times \\ \times \left[(B_{11} \pm \Delta B_{11}) - \frac{(B_{12} \pm \Delta B_{12})^{2}}{(B_{22} \pm \Delta B_{22})} \right]; \\ (E_{y} \pm \Delta E_{y}) = \frac{1}{(\delta_{0} \pm \Delta \delta_{0})n} \times \\ \times \left[(B_{22} \pm \Delta B_{22}) - \frac{(B_{12} \pm \Delta B_{12})^{2}}{(B_{11} \pm \Delta B_{11})} \right];$$
(21)
$$(G_{xy} \pm \Delta G_{xy}) = \frac{(B_{33} \pm \Delta B_{33})}{(\delta_{0} \pm \Delta \delta_{0})n}; \\ (v_{xy} \pm v_{xy}) = \frac{(B_{12} \pm \Delta B_{12})}{(B_{22} \pm \Delta B_{22})}; \\ (v_{yx} \pm v_{yx}) = \frac{(B_{12} \pm \Delta B_{12})}{(B_{11} \pm \Delta B_{11})},$$

где $(B_{ij} \pm \Delta B_{ij})$ - обобщенные жесткости многослойного пакета (паковки) и их приращения в осях ортотропии.

В случае трех направлений армирования ($n_0, 2n_{\pm \phi}, n_{90})$

$$\begin{aligned} \left(B_{11} \pm \Delta B_{11} \right) &= \frac{\left(\delta_{0} \pm \Delta \delta_{0} \right)}{\left(1 + \nu_{12} + \Delta \nu_{12}^{T} + \nu_{21} + \Delta \nu_{21}^{T} \right)} \times \\ &\times \left\{ n_{0} \left(E_{1} \pm \Delta E_{1}^{T} \right) + n_{90} \left(E_{2} \pm \Delta E_{2}^{T} \right) + 2n_{\phi} \times \right. \\ &\times \left[\left(E_{1} \pm \Delta E_{1}^{T} \right) \cos^{4} \left(\phi + \Delta \phi \right) + \left[\left(E_{2} \pm \Delta E_{2}^{T} \right) \times \right] \times \sin^{4} \left(\phi + \Delta \phi \right) + 2 \left(E_{1} \pm \Delta E_{1}^{T} \right) \nu_{21} + \frac{4\nu_{21}^{T}}{-\Delta \nu_{21}^{T}} \sin^{2} \left(\phi + \Delta \phi \right) \cos^{2} \left(\phi + \Delta \phi \right) + \left. + \left(G_{12} \pm \Delta G_{12} \left(1 + \nu_{12} + \frac{4\nu_{12}^{T}}{-\Delta \nu_{12}^{T}} \cdot \nu_{21} + \frac{4\nu_{21}^{T}}{-\Delta \nu_{21}^{T}} \right) \times \right] \right\};$$
(22)
$$\times \sin^{2} 2 \left(\phi + \Delta \phi \right) \end{aligned}$$

$$(B_{22} \pm \Delta B_{22}) = \frac{(\delta_0 \pm \Delta \delta_0)}{\left(1 + v_{12}^{+\Delta v_{12}^{\pi}} \cdot v_{21}^{+\Delta v_{21}^{\pi}}\right)} \times \left\{ n_0 \left(E_2 \pm \Delta E_2^{\pi} \right) + n_{90} \left(E_1 \pm \Delta E_1^{\pi} \right) + 2n_{\phi} \times \left[\left(E_1 \pm \Delta E_1^{\pi} \right) \sin^4 (\phi + \Delta \phi) + \left[\left(E_2 \pm \Delta E_2^{\pi} \right) \times + 2 \left(E_1 \pm \Delta E_1^{\pi} \right) \sin^4 (\phi + \Delta \phi) + \left[\left(E_2 \pm \Delta E_2^{\pi} \right) \times + 2 \left(E_1 \pm \Delta E_1^{\pi} \right) v_{21}^{+\Delta v_{21}^{\pi}} \sin^2 (\phi + \Delta \phi) \cos^2 (\phi + \Delta \phi) + \left(G_{12} \pm \Delta G_{12} \right) \left(1 + v_{12}^{+\Delta v_{12}^{\pi}} \cdot v_{21}^{+\Delta v_{21}^{\pi}} \right) \times \left[\left(E_{12} \pm \Delta G_{12} \right) \left(1 + v_{12}^{+\Delta v_{12}^{\pi}} \cdot v_{21}^{+\Delta v_{21}^{\pi}} \right) \times \right] \right\};$$
(23)

$$\times \sin^2 2(\phi + \Delta \phi)$$

^{*)} Более точные формулы приведены в [12].

^{**)} Количество структур более трех направлений практически не используется, хотя это не вносит принципиальных особенностей в определение ФМХ паковки.

$$\begin{split} & \left(B_{33} \pm \Delta B_{33}\right) = \frac{\left(\delta_{0} \pm \Delta \delta_{0}\right)}{\left(1 + v_{12}^{+\Delta v_{12}^{n}} \cdot v_{21}^{+\Delta v_{21}^{n}}\right) \times \\ \times \left[\left(n_{0} + n_{90}\right)\left(G_{12} \pm \Delta G_{12}\right) \times \right. \\ \times \left(1 + v_{12}^{+\Delta v_{12}^{n}} \cdot v_{21}^{+\Delta v_{21}^{n}}\right) + \\ & \left(1 + v_{12}^{+\Delta v_{12}^{n}} \cdot v_{21}^{+\Delta v_{21}^{n}}\right) + \left(E_{2} \pm \Delta E_{2}^{n}\right) - \\ & \left(E_{1} \pm \Delta E_{1}^{n}\right) + \left(E_{2} \pm \Delta E_{2}^{n}\right) - \\ & \left(E_{1} \pm \Delta G_{12}\right)\left(1 + v_{12}^{+\Delta v_{21}^{n}} \cdot v_{21}^{+\Delta v_{21}^{n}}\right) \times \\ & \times \sin^{2}(\varphi + \Delta \varphi)\cos^{2}(\varphi + \Delta \varphi) + \\ & \left(G_{12} \pm \Delta G_{12}\right)\left(1 + v_{12}^{+\Delta v_{12}^{n}} \cdot v_{21}^{+\Delta v_{21}^{n}}\right) \times \\ & \left(B_{12} \pm \Delta B_{12}\right) = \frac{\left(\delta_{0} \pm \Delta \delta_{0}\right)}{\left(1 + v_{12}^{+\Delta v_{12}^{n}} \cdot v_{21}^{+\Delta v_{21}^{n}}\right) \times \\ & \times \left[\left(n_{0} + n_{90}\right)\left(E_{1} \pm \Delta E_{1}^{n}\right)v_{21}^{+\Delta v_{21}^{n}} \cdot v_{21}^{+\Delta v_{21}^{n}}\right) \times \\ & \left. \times \left[\left(n_{0} + n_{90}\right)\left(E_{1} \pm \Delta E_{1}^{n}\right) + \left(E_{2} \pm \Delta E_{2}^{n}\right)\right] \times \\ & \left. + \left(E_{1} \pm \Delta E_{1}^{n}\right)v_{21}^{+\Delta v_{21}^{n}} \left[\sin^{4}(\varphi + \Delta \varphi) + \\ & \left. + \left(E_{1} \pm \Delta E_{1}^{n}\right)v_{21}^{+\Delta v_{21}^{n}} \left[\sin^{4}(\varphi + \Delta \varphi) + \\ & \left. + \left(E_{1} \pm \Delta E_{1}^{n}\right)v_{21}^{+\Delta v_{21}^{n}} \left[\sin^{4}(\varphi + \Delta \varphi) + \\ & \left. + \left(G_{12} \pm \Delta G_{12}\right)\left(1 + v_{12}^{+\Delta v_{12}^{n}} \cdot v_{21}^{+\Delta v_{21}^{n}}\right) \times \right] \right]. \end{aligned} \right] \right] . \end{aligned} \right]$$

Здесь от направления оси упругости 1 отсчитывается угол армирования $_{\phi}$. Эта ось соответствует направлению x, а ось упругости 2 - направлению y. В формулах (22) – (25) знак допуска на толщину монослоя $\Delta\delta_0$ определяется конечным значением толщины паковки: при $\delta_{\phi opm} > \delta_{Teop}$ знак $\Delta\delta_0$ положительный, при $\delta_{\phi opm} < \delta_{Teop}$ – отрицательный. В этих формулах

$$\Delta \delta_0 = \frac{\delta_{\phi \text{opm}} - \delta_{\text{reop}}}{n} , \qquad (26)$$

где $\delta_{\phi opm}$ – толщина паковки после формования; $\delta_{\text{теор}}$ – расчетная толщина паковки, определяемая паспортным значением монослоя без учета отклонений от номинала, умноженная на число монослоев.

В этих формулах отклонение параметров ΦMX монослоя $\pm \Delta R_i^n$ соответствует допустимым паспортным значениям.

Если модуль отклонения толщины монослоя $\Delta\delta_0$ может быть обоснованно принят постоянным

для любого монослоя паковки, то такая гипотеза применительно к отклонению в i-м слое $\Delta \phi_i$ является весьма грубой при ручной выкладке монослоев паковки.

При автоматизированной выкладке $\Delta \phi_i$ может быть принято постоянным, определяемым полем допуска, регламентированным для данного оборудования, равным [$\pm \phi$].

При оговоренных выше условиях зависимости (22) – (25) позволяют определить поле допуска любой ФМХ из (21) R_i как

$$\Delta R_{i} = \frac{(R + \Delta R) - (R - \Delta R)}{2}$$
(27)

для последующего принятия решения о допустимости отклонения ФМХ.

Более сложной задачей является установление полей допусков паковки, составленной из трех систем однонаправленных монослоев, соответствующих рассмотренным выше при определении ΔR_i других ФМХ. Здесь имеют место три возможных варианта (модели), два из которых изложены в [12], а третий, наиболее простой, но и приводящий к большим погрешностям, основан на применении правила смесей.^{*)}

Вариант, дающий наиболее точные результаты, основан на использовании тех или иных критериев прочности ПКМ. В [12] исследована реализация трех критериев: максимальных напряжений, максимальных деформаций и критерий Мизеса - Хилла для определения прочностных свойств слоистых ПКМ, состоящих в общем случае из і направлений монослоя.

Учитывая, что в расчетах на прочность агрегатов РКТ чаще всего используется критерий Мизеса-Хилла, ниже для определения отклонений прочностных свойств пакета ПКМ от их средних значений ΔR_i применен этот критерий.

На базе критерия Мизеса - Хилла получим [12]:

$$\sigma_{x} \leq \left[\frac{\overline{E}_{1i}^{2} \left(a_{11i} + v_{21i}a_{21i}\right)}{\sigma_{xi}^{2}} - \frac{\overline{E}_{1i}\overline{E}_{2i} \left(a_{11i} + v_{21i}a_{21i}\right) \left(v_{12i}a_{11i} + a_{21i}\right)}{\sigma_{xi}\sigma_{yi}} + \frac{\overline{E}_{2i}^{2} \left(v_{12i}a_{11i} + a_{21i}\right)^{2}}{\tau_{xyi}^{2}} + \frac{G_{12i}^{2}a_{31i}^{2}}{\tau_{xyi}^{2}}\right]^{-0.5}; \quad (28)$$

^{*)} Грубое приближение при реализации этого варианта предопределено неучетом совместности деформаций трех семейств монослоев, однако этот вариант рекомендован в Руководящих технических материалах ГП «Антонов» [13].

$$\sigma_{\rm BX} = {}^{\rm min}_{(i)} \left[\frac{\overline{E}_{1i}^2 \left(a_{11i} + v_{21i} a_{21i} \right)^2}{\sigma_{\rm BXi}^2} + \frac{\overline{E}_{2i}^2 \left(v_{12i} a_{11i} + a_{21i} \right)^2}{\sigma_{\rm Byi}^2} + \frac{G_{12i}^2 a_{31i}^2}{\tau_{\rm BXyi}^2} - \frac{\overline{E}_{1i} \overline{E}_{2i} \left(a_{11i} + v_{21i} a_{21i} \right) \left(v_{12i} a_{11i} + a_{21i} \right)}{\sigma_{\rm BXi} \sigma_{\rm Byi}} \right]^{-0.5}, \quad (29)$$

где $\sigma_{\text{вхi}}$ и $\sigma_{\text{вуi}}$ определяются из условий:

- при определении предела прочности на растяжение σ_{BX} характеристики монослоев $\sigma_{\text{BX}i}$, $\sigma_{\text{By}i}$ равны:

$$\sigma_{\text{BXI}} = \begin{cases} \sigma_{\text{BXI}} & \text{при} \ (a_{11i} + v_{21i}a_{21i}) > 0; \\ \sigma_{-\text{BXI}} & \text{при} \ (a_{11i} + v_{21i}a_{21i}) < 0; \end{cases}$$
(30)

$$\sigma_{\rm Byi} = \begin{cases} \sigma_{\rm Byi} & \text{при} \ (\nu_{12i}a_{11i} + a_{21i}) > 0; \\ \sigma_{\rm -Byi} & \text{при} \ (\nu_{12i}a_{11i} + a_{21i}) < 0, \end{cases}$$
(31)

а для нахождения предела прочности на сжатие $\sigma_{_{-BX}}$

$$\sigma_{\text{BXI}} = \begin{cases} \sigma_{-\text{BXI}} & \text{при} \left(a_{11i} + v_{21i} a_{21i} \right) > 0; \\ \sigma_{\text{BXI}} & \text{при} \left(a_{11i} + v_{21i} a_{21i} \right) < 0; \end{cases}$$
(32)

$$\sigma_{Byi} = \begin{cases} \sigma_{-Byi} & \text{при} \ (v_{12i}a_{11i} + a_{21i}) > 0; \\ \sigma_{Byi} & \text{при} \ (v_{12i}a_{11i} + a_{21i}) < 0. \end{cases}$$
(33)

$$\sigma_{\rm By} =_{(i)}^{\rm min} \left[\frac{\overline{E}_{1i}^2 \left(a_{12i} + v_{21i} a_{22i} \right)^2}{\sigma_{\rm Bxi}^2} + \frac{\overline{E}_{2i}^2 \left(v_{12i} a_{12i} + a_{22i} \right)^2}{\sigma_{\rm Byi}^2} + \frac{G_{12i}^2 a_{32i}^2}{\tau_{\rm Bxyi}^2} - \frac{\overline{E}_{1i} \overline{E}_{2i} \left(a_{12i} + v_{21i} a_{22i} \right) \left(v_{12i} a_{12i} + a_{22i} \right)}{\sigma_{\rm Bxi} \sigma_{\rm Byi}} \right]^{-0.5}, \quad (34)$$

где $\sigma_{\text{вхi}}$ и $\sigma_{\text{вуi}}$ определяются согласно условиям, приведенным ниже.

Для определения предела прочности на растяжение $\sigma_{\scriptscriptstyle BV}$

$$\sigma_{\text{BXI}} = \begin{cases} \sigma_{\text{BXI}} & \text{при} \ (a_{12i} + v_{21i}a_{22i}) > 0; \\ \sigma_{-\text{BXI}} & \text{при} \ (a_{12i} + v_{21i}a_{22i}) < 0; \end{cases}$$
(35)

$$\sigma_{Byi} = \begin{cases} \sigma_{Byi} & \text{при} \ (v_{12i}a_{12i} + a_{22i}) > 0; \\ \sigma_{-Byi} & \text{при} \ (v_{12i}a_{12i} + a_{22i}) < 0, \end{cases}$$
(36)

а для нахождения предела прочности на сжатие $\sigma_{-\text{BV}}$

$$\sigma_{\text{BXi}} = \begin{cases} \sigma_{-\text{BXi}} & \text{при} \ (a_{12i} + v_{21i}a_{22i}) > 0; \\ \sigma_{\text{BXi}} & \text{при} \ (a_{12i} + v_{21i}a_{22i}) < 0; \end{cases}$$
(37)

$$\sigma_{Byi} = \begin{cases} \sigma_{-Byi} & \text{при} \ (v_{12i}a_{12i} + a_{22i}) > 0; \\ \sigma_{Byi} & \text{при} \ (v_{12i}a_{12i} + a_{22i}) < 0. \end{cases}$$
(38)

$$\begin{aligned} \tau_{_{BXY}} &=_{(i)}^{\min} \left[\frac{\overline{E}_{1i}^{2} \left(a_{13i} + v_{21i} a_{23i} \right)^{2}}{\sigma_{_{BXi}}^{2}} + \right. \\ &+ \frac{\overline{E}_{2i}^{2} \left(v_{12i} a_{13i} + a_{23i} \right)^{2}}{\sigma_{_{Byi}}^{2}} + \frac{G_{12i}^{2} a_{32i}^{2}}{\tau_{_{BXyi}}^{2}} - \\ &- \frac{\overline{E}_{1i} \overline{E}_{2i} \left(a_{13i} + v_{21i} a_{22i} \right) \left(v_{12i} a_{13i} + a_{23i} \right)}{\sigma_{_{BXi}} \sigma_{_{Byi}}} \right]^{-0.5}, \quad (39) \end{aligned}$$

где $\sigma_{\text{вхі}}$ и $\sigma_{\text{вуі}}$ определяются согласно условиям^{*)}:

- при $\tau_{BXY} = \tau_{BXY}^{(+)}$

$$\sigma_{\text{bxi}} = \begin{cases} \sigma_{\text{bxi}} & \text{при} \ \left(a_{13i} + \nu_{21i}a_{23i}\right) > 0; \\ \sigma_{-\text{bxi}} & \text{при} \ \left(a_{13i} + \nu_{21i}a_{23i}\right) < 0; \end{cases} \tag{40}$$

$$\sigma_{Byi} = \begin{cases} \sigma_{Byi} & \text{при } (v_{12i}a_{13i} + a_{23i}) > 0; \\ \sigma_{-Byi} & \text{при } (v_{12i}a_{13i} + a_{23i}) < 0, \end{cases}$$
(41)

а при $\tau_{\text{вху}} = \tau_{\text{вху}}^{(-)}$

$$\sigma_{\text{BXi}} = \begin{cases} \sigma_{-\text{BXi}} & \text{при} \ (a_{13i} + v_{21i}a_{23i}) > 0; \\ \sigma_{\text{BXi}} & \text{при} \ (a_{13i} + v_{21i}a_{23i}) < 0; \end{cases}$$
(42)

$$\sigma_{Byi} = \begin{cases} \sigma_{-Byi} & \text{при } (v_{12i}a_{13i} + a_{23i}) > 0; \\ \sigma_{Byi} & \text{при } (v_{12i}a_{13i} + a_{23i}) < 0. \end{cases}$$
(43)

В формулах (28) – (43) в целях сокращения их записей все входящие в них ФМХ и прочностные характеристики представлены их средними значениями R_i без учета поля их отклонений $(R_i \pm \Delta R_i)$ или $R_{i-\Delta R_i}^{+\Delta R_i}$. Кроме того вместо модулей упругости і-го направления вдоль армирующих волокон E_{1i} и поперек волокон E_{2i} эти формулы содержат их значения, отнесенные к параметру $(1-v_{12}v_{21})$:

$$\overline{E}_{1i} = \frac{E_{1i}}{(1 - v_{12}v_{21})}$$
 и $\overline{E}_{2i} = \frac{E_{2i}}{(1 - v_{12}v_{21})}$.
Параметры податливостей a_{jk} (j=1,2,3;

k = 1,2,3) также приведены в виде их средних значений.

Так как в осях x, у ПКМ является ортотропной средой, то пределы прочности определяются по приведенным выше зависимостям, в которых коэффициенты податливости равны:

$$a_{11i} = \frac{\cos^2 \phi_i - v_{xy} \sin^2 \phi_i}{E_x};$$

$$a_{12i} = \frac{\sin^2 \phi_i - v_{yx} \cos^2 \phi_i}{E_y};$$

^{*)} В [12] критерий Мизеса - Хилла использован для случая, когда ПКМ имеет различные пределы прочности на сдвиг при противоположных направлениях парных касательных напряжений.

$$a_{13i} = \frac{\sin 2\varphi_{i}}{2G_{xy}}; a_{23i} = \frac{\sin 2\varphi_{i}}{2G_{xy}};$$

$$a_{21i} = \frac{\sin^{2}\varphi_{i} - v_{xy}\cos^{2}\varphi_{i}}{E_{x}};$$

$$a_{22i} = \frac{\cos^{2}\varphi_{i} - v_{yx}\sin^{2}\varphi_{i}}{E_{y}};$$

$$a_{31i} = \frac{(1 + v_{xy})\sin 2\varphi_{i}}{E_{x}};$$

$$a_{32i} = \frac{(1 + v_{yx})\sin 2\varphi_{i}}{E_{y}};$$

$$a_{33i} = \frac{\cos 2\varphi_{i}}{G_{xy}}.$$
(44)

Вследствие того, что предполагается, что паковка состоит из трех систем однонаправленных слоев n_0 , $2n_{\phi}$ и n_{90} , то, расписывая тригонометрические функции, входящие в (43), в виде $\sin(\phi + \Delta \phi)$, $\cos(\phi + \Delta \phi)$ и $\cos 2(\phi + \Delta \phi)$, $\sin 2(\phi + \Delta \phi)$, для соответствующих направлений, опуская промежуточные выкладки, получим:

- для системы монослоев i = 1, в которых $\phi = 0$:

$$a_{110} = \frac{\cos^{2} \Delta \varphi - v_{xy}^{+\Delta v_{xy}} \sin^{2} \Delta \varphi}{(E_{x} \pm \Delta E_{x})};$$

$$a_{120} = \frac{\sin^{2} \Delta \varphi - v_{xy}^{+\Delta v_{xy}} \cos^{2} \Delta \varphi}{(E_{y} \pm \Delta E_{y})};$$

$$a_{130} = \pm \frac{\sin 2\Delta \varphi}{2(G_{xy} \pm \Delta G_{xy})};$$

$$a_{210} = \frac{\sin^{2} \Delta \varphi - v_{xy}^{+\Delta v_{xy}} \cos^{2} \Delta \varphi}{(E_{x} \pm \Delta E_{x})};$$

$$a_{220} = \frac{\cos^{2} \Delta \varphi - v_{xy}^{+\Delta v_{xy}} \sin^{2} \Delta \varphi}{(E_{y} \pm \Delta E_{y})};$$

$$a_{230} = \pm \frac{\sin 2\Delta \varphi}{2(G_{xy} \pm \Delta G_{xy})};$$

$$a_{310} = \pm \frac{(1 + v_{xy}^{+\Delta v_{xy}}) \sin 2\Delta \varphi}{(E_{x} \pm \Delta E_{x})};$$

$$a_{320} = \pm \frac{(1 + v_{xy}^{+\Delta v_{xy}}) \sin 2\Delta \varphi}{(E_{y} \pm \Delta E_{y})};$$

$$a_{330} = \frac{\cos 2\Delta \varphi}{(G_{xy} \pm \Delta G_{xy})}.$$
(45)

- для системы монослоев i=2, в которых $_{\Phi}=90^{\circ}$:

$$a_{1190} = \frac{\sin^{2} \Delta \varphi - v_{xy-\Delta v_{xy}}^{+\Delta v_{xy}} \cos^{2} \Delta \varphi}{(E_{x} \pm \Delta E_{x})};$$

$$a_{1290} = \frac{\cos^{2} \Delta \varphi - v_{xy-\Delta v_{xy}}^{+\Delta v_{xy}} \sin^{2} \Delta \varphi}{(E_{y} \pm \Delta E_{y})};$$

$$a_{1390} = \pm \frac{\sin 2\Delta \varphi}{2(G_{xy} \pm \Delta G_{xy})};$$

$$a_{2190} = \frac{\cos^{2} \Delta \varphi - v_{xy-\Delta v_{xy}}^{+\Delta v_{xy}} \sin^{2} \Delta \varphi}{(E_{x} \pm \Delta E_{x})};$$

$$a_{2290} = \frac{\sin^{2} \Delta \varphi - v_{xy-\Delta v_{xy}}^{+\Delta v_{xy}} \cos^{2} \Delta \varphi}{(E_{y} \pm \Delta E_{y})};$$

$$a_{3190} = \pm \frac{\sin 2\Delta \varphi}{2(G_{xy} \pm \Delta G_{xy})};$$

$$a_{3190} = \pm \frac{(1 + v_{xy-\Delta v_{xy}}^{+\Delta v_{xy}}) \sin 2\Delta \varphi}{(E_{x} \pm \Delta E_{x})};$$

$$a_{3290} = \pm \frac{(1 + v_{xy-\Delta v_{xy}}^{+\Delta v_{xy}}) \sin 2\Delta \varphi}{(E_{y} \pm \Delta E_{y})};$$

$$a_{3290} = \pm \frac{(1 + v_{xy-\Delta v_{xy}}^{+\Delta v_{xy}}) \sin 2\Delta \varphi}{(E_{y} \pm \Delta E_{y})};$$

$$a_{3390} = -\frac{\cos 2\Delta \varphi}{(G_{xy} \pm \Delta G_{xy})}.$$

Для сокращения выкладок будем считать, что третья система монослоев i = 3 имеет схему укладки $\pm \phi = \pm 45^{\circ^*}$. Тогда для этой системы:

$$a_{1145} = \frac{\left(1 \pm \sin 2\Delta\phi\right) \left(1 - v_{xy} + \Delta v_{xy}\right)}{2(E_x \pm \Delta E_x)};$$

$$a_{1245} = \frac{\left(1 \pm \sin 2\Delta\phi\right) \left(1 - v_{xy} + \Delta v_{xy}\right)}{(E_y \pm \Delta E_y)};$$

$$a_{1345} = \pm \frac{\cos 2\Delta\phi}{2(G_{xy} \pm \Delta G_{xy})};$$

$$a_{2145} = \frac{\left(1 \pm \sin 2\Delta\phi\right) \left(1 - v_{xy} + \Delta v_{xy}\right)}{(E_x \pm \Delta E_x)};$$

$$a_{2245} = \frac{\left(1 \pm \sin 2\Delta\phi\right) \left(1 - v_{xy} + \Delta v_{xy}\right)}{(E_y \pm \Delta E_x)};$$

$$a_{2345} = \pm \frac{\cos 2\Delta\phi}{2(G_{xy} \pm \Delta G_{xy})};$$

^{*)} Система монослоев (0°, $\pm 45^{\circ}$, 90°) наиболее часто применяется на практике для формирования агрегатов РКТ из ПКМ [13].

$$a_{3145} = \pm \frac{\left(1 + v_{xy}^{+\Delta v_{xy}}\right)\cos 2\Delta\phi}{\left(E_x \pm \Delta E_x\right)};$$

$$a_{3245} = \pm \frac{\left(1 + v_{xy}^{+\Delta v_{xy}}\right)\cos 2\Delta\phi}{\left(E_y \pm \Delta E_y\right)}; \quad (47)$$

$$a_{3345} = \pm \frac{\sin 2\Delta\phi}{\left(G_{xy} \pm \Delta G_{xy}\right)}.$$

Подстановка а _{ik0} из (45) в (30) – (33), а затем результатов в (29), (34) и (39) позволяет определить минимальные значения $(\sigma_{BX0} \pm \Delta \sigma_{BX0}),$ $(\sigma_{\rm BV0} \pm \Delta \sigma_{\rm BV0})$ и $(\tau_{\rm BXV0} \pm \Delta \tau_{\rm BXV0})$, которые соответствуют пределам прочности системы монослоев ПКМ направления $\varphi = 0$. Аналогичная подстановка а_{ik 90} из (46) в эти же формулы (30) – (33) с последующим введением результатов в (29), (34) и (39) дает минимальные значения этих параметров для направления системы монослоев $\phi = 90^\circ$. Наконец, такая же операция с податливостями а_{ik 45} из (47) $\min(\sigma_{BX 45} \pm \Delta \sigma_{BX 45}),$ позволяет определить $\min(\sigma_{BV45} \pm \Delta \sigma_{BV45})$ μ $\min(\tau_{BXV45} \pm \Delta \tau_{BXV45})$,

 $\min(\sigma_{BX0} \pm \Delta \sigma_{BX0})$. В качестве определяющих характеристик прочности всей структуры паковки $(0^{\circ}, \pm 45^{\circ}, 90^{\circ})$ должны быть приняты

$$\min\min\left\{\min\left\{ \begin{array}{l} \left(\sigma_{BX 0} \pm \Delta \sigma_{BX 0}\right), \\ \left(\sigma_{By 0} \pm \Delta \sigma_{By 0}\right), \\ \left(\tau_{BX y 0} \pm \Delta \tau_{BX y 0}\right), \\ \left(\tau_{BX 9 0} \pm \Delta \sigma_{BX 9 0}\right), \\ \left(\sigma_{By 9 0} \pm \Delta \sigma_{BY 9 0}\right), \\ \left(\tau_{BX y 9 0} \pm \Delta \tau_{BX y 9 0}\right), \\ \left(\tau_{BX 45} \pm \Delta \sigma_{BX 45}\right), \\ \left(\sigma_{By 45} \pm \Delta \sigma_{BY 45}\right), \\ \left(\tau_{BX y 45} \pm \Delta \tau_{BX y 45}\right), \\ \left(\tau_{BX y 45} \pm \Delta \tau_{BX y 45}\right), \\ \end{array} \right\}.$$
(48)

Промежуточный по точности результат дает стержневая математическая модель ПКМ трехнаправленной системы монослоев, предложенная В.Е. Гайдачуком и Я.С. Карповым в [14]^{*)}.

Наконец, как уже отмечалось выше, самый грубый результат дает простая математическая модель, основанная на правиле смесей, в соответствии с которой

$$(\sigma_{BX} \pm \Delta \sigma_{BX}) = \frac{(\sigma_{B0} \pm \Delta \sigma_{B0})n_{0}}{n} + + \frac{(\sigma_{B90} \pm \Delta \sigma_{B90})n_{90} + 2(\sigma_{B45} \pm \Delta \sigma_{B45})n_{45}}{n}; (\sigma_{BY} \pm \Delta \sigma_{BY}) = \frac{(\sigma_{B0} \pm \Delta \sigma_{B0})n_{90}}{n} + + \frac{(\sigma_{B90} \pm \Delta \sigma_{B90})n_{0} + 2(\sigma_{B45} \pm \Delta \sigma_{B45})n_{45}}{n}; (\tau_{BXY} \pm \Delta \tau_{BXY}) = \frac{(\tau_{B0,90} \pm \Delta \tau_{B0,90})(n_{0} + n_{90})}{n} + + \frac{2(\tau_{B45} \pm \Delta \tau_{B45})n_{45}}{n};$$

$$(49)$$

где $\mathbf{n} = (\mathbf{n}_0 + \mathbf{n}_{90} + 2\mathbf{n}_{45}).$

Замена в зависимостях (49) σ_{BX} на σ_{-BX} и σ_{BY} на σ_{-BY} , а также σ_{B0} , σ_{B90} и σ_{B45} на σ_{-B0} , σ_{-B90} и σ_{-B45} с соответствующими им отклонениями от средних значений позволяет приближенно оценить и пределы прочности этой структуры при сжатии.

Выводы

В заключение отметим следующее. Если армирующий материал в виде препрега прошел входной контроль, то дефекты в виде отклонения толщины от номинала, возникающие в процессе изготовления изделия из ПКМ и измеряемые после его формования, приводят к несоответствию ФМХ паспортным значениям. Отклонения ФМХ вызваны приращением $\Delta\delta$, связанным с $\Delta\theta_{\rm B}$ и $\Delta\theta_{\rm c}$ формулой (9), причем установить вклад каждого из приращений относительного объемного содержания компонентов достаточно сложно.

Если операция формования из соответствующих паспорту по допускам препрегов производится в замкнутых формах, исключающих вытекание связующего из монослоев, приводящего к утонению паковки, то $\Delta \theta_c = 0$ и это утонение связано только с $\Delta \theta_B$ за счет нарушения параметров формования p > [p] при T = [T] или p = [p] при T > [T].

Значение $\Delta \theta_{\rm B}$ определится из соотношения, следующего из (9)

$$\Delta \theta_{\rm B} = \frac{\Delta \delta}{\delta} = \frac{\Delta \delta}{\delta_0 n} \,. \tag{50}$$

Входной контроль определяет реализованное в препреге отклонение толщины от номинала $\Delta \delta_0$ для однослойного полуфабриката. Отклонение $\Delta \delta_{\text{пак}}$ паковки от номинала включает в себя составляющие $\Delta \delta_{\text{препр}} = \Delta \delta_0 n$ (n - число монослоев в паковке) и

$$\Delta \delta_{\phi \text{орм}} = \left(\Delta \delta_{\Pi a \kappa} - \Delta \delta_{\Pi p e \Pi p} \right). \tag{51}$$

^{*)} Зависимости для пределов прочности трехнаправленной структуры, вытекающие из стержневой модели, не намного проще, чем приведенные выше. Поэтому они здесь не приводятся вследствие ограниченного объема статьи.

Эта составляющая связана с интегральными отклонениями технологического режима формования от регламентированного соответствующей документацией (инструкциями, ТУ и т.д.) ($\Delta p, \Delta(p-\tau), H(T-\tau)$). Определить вклад в $\Delta \delta_{\phi opm}$ и последующие отклонения ФМХ каждой из этих составляющих является весьма сложной задачей, решаемой, очевидно, приближенно в рамках экспериментально-теоретических методов.

В то же время допустимость исследуемого вида дефекта определяется его уровнем, который находится по формуле (51), являющейся исходным шагом к нахождению имевшего место в процессе формования отклонения в объемном содержании армирующего материала по формуле, следующей из (50) и (51)

$$\Delta \theta_{\rm B \phi opm} = \frac{\Delta \delta_{\rm \Pi a \kappa} - \Delta \delta_{\rm \Pi p e \Pi p}}{\delta_{\rm dopm}} , \qquad (52)$$

где $\delta_{\phi opm}$ – замеренная толщина в исследуемой зоне формовки.

Значение $\Delta \theta_{в \phi орм}$ из (52), будучи подставлен-

ным в формулы (12) – (47), позволяет определить истинные ФМХ ПКМ паковки в этой зоне для принятия последующего решения о допустимости такого уровня отклонений ФМХ ПКМ от паспортных значений или необходимости отбраковки изделия, если оно не может быть отремонтировано.

Литература

1. Кондратьев, А.В. Обзор и анализ мировых тенденций и проблем расширения применения в агрегатах ракетно-космической техники полимерных композиционных материалов [Текст] / А.В. Кондратьев, В.А. Коваленко // Вопросы проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Вып. 3(67). – Х., 2011. – С. 7 – 18.

2. Гайдачук, В.Е. О возможности регламентации технологических несовершенств в конструкциях из композиционных материалов [Текст] / В.Е. Гайдачук, Н.Б. Воронцов, А.И. Рукавишников // Прочность конструкций летательных аппаратов: темат. сб. науч. тр. Харьк. авиац. ин-та им. Н.Е. Жуковского. – Вып. 6. – Х., 1981. – С. 124 – 129.

3. Гайдачук, В.Е. Предельные размеры локальных технологических отклонений срединной поверхности деталей из композиционных материалов [Текст] / В.Е. Гайдачук, Л.М. Стариков // Вопросы проектирования и технологии производства конструктивных элементов летательных аппаратов: темат. сб. науч. тр Харьк. авиац. ин-та им. Н.Е. Жуковского. – Х., 1986. – С. 148–155.

4. Технология производства летательных аппаратов из композиционных материалов [Текст]/ В.Е. Гайдачук, В.Д. Гречка, В.Н. Кобрин, Г.А. Молодцов. – Х.: Харьк. авиац. ин-т, 1989. – 332 с.

5. Ривин, Г.Л. Ремонт конструкций из полимерных композиционных материалов: учеб. пособие [Текст] / Г.Л. Ривин. – Ульяновск: УлГТУ, 2000. – 75 с.

6. Воробей, В.В. Контроль качества изготовления и технология ремонта композитных конструкций [Текст] / В.В. Воробей, В.Б. Маркин. – Новосибирск: Наука, 2006. – 400 с.

7. Михайлин, Ю.А. Конструкционные полимерные композиционные материалы [Текст] / Ю.А. Михайлин. – СПб.: НАТ, 2008. – 822 с.

8. Технологія виробництва літальних апаратів із композиційних матеріалів: підручник [Текст] / С.А. Бичков, О.В. Гайдачук, В.С. Гайдачук, В.Д. Гречка, В.М. Кобрін. – К.: ІСДО, 1995. – 376 с.

9. Гайдачук, А.В. Анализ технологических дефектов, возникающих в серийном производстве интегральных авиаконструкций из полимерных композиционных материалов [Текст] / А.В. Гайдачук, А.В. Кондратьев, Е.В. Омельченко // Авиационнокосмическая техника и технология. – 2010. – № 3(70). – С. 40 – 49.

10. Буланов, И.М. Технология ракетных и аэрокосмических конструкций из композиционных материалов [Текст] / И.М. Буланов, В.В. Воробей. – М.: Изд-во МГТУ им. Н.Э. Баумана, 1998. – 516 с.

11. Гайдачук, В.Е. Механика волокнистых композиционных материалов: учеб. пособие [Текст] / В.Е. Гайдачук, Я.С. Карпов. – Х.: Нац. аэрокосм. унт им. Н.Е. Жуковского «Харьк. авиац. ин-т», 1991. – 97 с.

12. Карпов, Я.С. Проектирование деталей и агрегатов из композитов: учебник [Текст] / Я.С. Карпов. – Х.: Нац. аэрокосм. ун-т им. Н.Е. Жу-ковского «Харьк. авиац. ин-т», 2010. – 768 с.

13. Руководящие технические материалы для конструкторов РТМ-87 [Текст]. – К.: АНТК «Антонов», 1987. – 387 с.

14. Гайдачук, В.Е. Структурная модель симметрично-армированного композиционного материала [Текст] / В.Е. Гайдачук, Я.С. Карпов // Прочность конструкций летательных аппаратов: сб. науч. тр. Харьк. авиац. ин-та им. Н.Е. Жуковского. – Вып. 6. – Х., 1981. – С. 28 – 37.

Поступила в редакцию 3.04.2012

Рецензент: д-р техн. наук, проф., зав. каф. проектирования ракетно-космических аппаратов В.Е. Гайдачук, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.

ДОСЛІДЖЕННЯ ТЕХНОЛОГІЧНИХ ДЕФЕКТІВ, ЩО ВИНИКАЮТЬ У ВИРОБНИЦТВІ АГРЕГАТІВ РАКЕТНО-КОСМІЧНОЇ ТЕХНІКИ З ПОЛІМЕРНИХ КОМПОЗИЦІЙНИХ МАТЕРІАЛІВ. ПОВІДОМЛЕННЯ 1. ДОПУСКИ НА ВІДХИЛЕННЯ ВІД ПРОЕКТНОГО ЗНАЧЕННЯ ТОВЩИНИ ВИРОБУ, ЩО ФОРМУЄТЬСЯ

В.О. Коваленко

На основі математичних моделей теорії армування однонаправлених структур і структур, армованих у трьох напрямах (0° , $\pm \varphi$, 90°), отримано залежності для обгрунтованого призначення полів допусків фізикомеханічних і міцнісних характеристик полімерних композиційних матеріалів у результаті зміни товщини формованого напівфабрикату (препрегу) і виробу. Отримані залежності дозволяють оцінити якість технологічних процесів формування напівфабрикатів і виробів із полімерних композиційних матеріалів за рівнем геометричного виду дефекту даного класу.

Ключові слова: полімерний композиційний матеріал, технологічний процес формування, дефекти відхилення товщини виробу, поля допусків.

RESEARCHING OF DEFECTS RESULTING IN PRODUCTION AGGREGATES OF ROCKET AND SPACE TECHNOLOGY MADE OF POLYMERIC COMPOSITE MATERIALS REPORT 1. TOLERANCE OF MOLDED PRODUCTS THICKNESS FROM PROJECT VALUE

V.A. Kovalenko

Dependences intended for the justified appointment of tolerances fields for physical-mechanical and strength characteristics of polymer composite materials from changes in the thickness of molded semi-finished products (prepregs) and products were obtain on the basis of mathematical models of unidirectional reinforcement structures and structures which reinforced in three directions ($0^{\circ}, \pm \varphi, 90^{\circ}$). These dependencies allow estimating the quality of technological processes molding semi-finished products and products of polymer composite materials in terms of the geometric form of this defects class.

Key words: polymer composite material, molding technological process, defects of deviation product thickness, tolerances field.

Коваленко Виктор Александрович – канд. техн. наук, начальник лаборатории, Государственное предприятие «Конструкторское бюро «Южное» им. М.К. Янгеля», Днепропетровск, Украина.