УДК 533.9.07, 533.9.082.74, 621.3.095.21

С.А. ОГИЕНКО

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

ГЕНЕРИРОВАНИЕ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СВЧ ДИАПАЗОНА В ПЛАЗМЕ ДВИГАТЕЛЯ ХОЛЛА

Изучаются механизмы непосредственного генерирования электромагнитного излучения CBЧ диапазона в плазме двигателя Холла, которое является помехой радиосигналу связи космического аппарата через ионосферу Земли. Для анализа использованы результаты экспериментов по определению спектральной плотности мощности CBЧ излучения исследователей США (10⁻⁶³ Bm/MГц) и России (10¹⁰ Bm/MГц). В дипольном приближении выполнен расчёт мощности электромагнитного излучения в характерном диапазоне f=1,5...10 ГГц. На основе этого расчёта проанализированы возможные механизмы генерирования CBЧ излучения - тормозной и циклотронный, а также излучение электронов при ускоренном движении через локальные области с перепадом потенциала – в радиальном направлении на границе и в азимутальном направлении в объёме осесимметричного потока плазмы – наиболее вероятные причины генерирования электромагнитного CBЧ излучения непосредственно в результате движения зарядов в плазме двигателя.

Ключевые слова: плазма, двигатель Холла, расчёт мощности электромагнитного излучения, СВЧ диапазон.

Введение

Базовая конструкция двигателя Холла (ХД) (рис. 1) используется в составе двигательных установок космических аппаратов уже десятки лет благодаря хорошему сочетанию эксплуатационных характеристик - приемлемый тяговый КПД и надёжность - первых моделей двигателя. Дальнейшее развитие ХД предполагает поиск решения проблем, которые ограничивают использование преимуществ двигателя - одна из которых - радиопомехи работе приёмопередающим устройствам аппарата из-за СВЧ излучения из плазмы ХД. Базой для соответствующей технической модернизации двигателя является понимание роли основных процессов (факторов) в плазме, которые определяют выходящее электромагнитное излучение (ЭМИ). Это исследование проведено для выявления наиболее значимых процессов движения зарядов, в результате которых непосредственно происходит генерирование выходящего из плазмы ЭМИ в СВЧ диапазоне.

1. Анализ существующих проблем, определение задач исследования

Известно, что частотный диапазон электромагнитных (ЭМ) волн, генерируемых в плазме ХД, пересекается с диапазоном радиосигнала, который используется для связи через ионосферу Земли [1 – 4] ≈2...10 ГГц. При этом мощность ЭМИ плазмы

ХД во много раз превосходит мощность радиосигнала связи, что делает невозможным бесперебойную передачу информации. Общая мощность ЭМИ W_{эксп}, рассчитанная на основе известных экспериментальных данных о плотности мощности излучения в диапазоне частот f=1,5...10 ГГц, составляет W_{эксп}~ 10^{-3} Вт (данные о плотности мощности из США [1]), а также $W_{_{3 \text{ксп}}} \sim 10^{-7}$ Вт (по данным из России [2 – 4]) на близких режимах работы двигателя типа СПД М-100.

К настоящему времени известны несколько публикаций результатов работ (например [2 – 4]), выполненных лишь в одной организации России, в которых проводится анализ двух механизмов генерирования такого ЭМИ – трансформация плазменных волн в ЭМ волны и генерирование ЭМИ шумовыми колебаниями в плазме, усиленными плазменными волнами. Этот анализ подтверждён расчётом лишь в ограниченном диапазоне мощности ЭМИ $\approx 10^{-7...-8}$ Вт и частоты $\omega_{\text{расч}} \approx 12$ ГГц, тогда как экспериментальные результаты показывают мощность 10^{-3} Вт и $\omega_{\text{эксп}} \approx 9...60$ ГГц и более.

На основе проведенного анализа сделано заключение о необходимости, в первую очередь, проанализировать возможные причины генерирования СВЧ излучения вблизи мощности 10^{-3} и 10^{-7} Вт и частот $\omega_{3\kappa cn} \approx 9...60$ ГГц непосредственно в результате движения зарядов в плазме, когда ожидается более высокая точность результатов, чем при расчёте трансформации волн.

Задачи выполнялись в следующей последовательности. С учётом характерных параметров плазмы в ХД (см. рис. 1) [5, 6] проведен расчёт мощности и частоты тормозного и циклотронного СВЧ излучения, затем - излучения электронов при их ускорении в пограничном слое потока плазмы и в локальных областях азимутальной неоднородности потенциала в потоке плазмы.

2. Тормозное излучение

Оценочный расчёт мощности тормозного излучения электронов проведен в дипольном приближении, следуя [7]. При этом предполагалось, как упрощение, что распределение электронов в пространстве скоростей является б-функцией и все электроны имеют скорость, соответствующую наиболее распределения Максвелла вероятной ИЗ $V=V_{\text{вер}}=(T_e \cdot e \cdot 2/m)^{1/2}$ при температуре T_e (в эВ), массе т и величине единичного заряда e=1,6·10⁻¹⁹. Введя обозначения и характерные величины: диапазона частот излучения ∆ю≈2·10⁹ ГГц; характерной концентрации плазмы n_e≈5·10¹⁷ м⁻³; температуры электронов T_е≈30 эВ; излучаемого объёма V_{пл} плазмы область, в которой преимущественно генерируется излучение - участок потока плазмы в разрядном промежутке (где магнитная индукция и электрическое поле значительны) с площадью сечения S≈50·10⁻⁴ м² и протяжённостью L≈4·10⁻² м так, что величина V_{пл}≈S·L≈2·10⁻⁴ м³, диэлектрической проницаемости плазмы $\epsilon \approx 1 - \omega_L^2 / \omega^2 \approx 0.5$, скорости света $c=3\cdot10^8$ м/с, постоянной Эйлера $\gamma=1,78$, мощность W_T тормозного излучения электронов рассчитывается, следуя [7], как

$$W_{\rm T} = \sqrt{\epsilon} \cdot \frac{16 \cdot e^6 \cdot n_{\rm i}}{3 \cdot V \cdot c^3 \cdot m^2} \cdot \ln\left(\frac{2 \cdot m \cdot V^3}{\gamma \cdot \omega \cdot 2 \cdot e^2}\right) \cdot \Delta \omega \cdot n_{\rm e} \cdot V_{\rm nn}.$$

Используя определённые ранее величины, рассчитана величина $W_T \approx 10^{-21}$ Вт.

При этом частота излучения

 $ω \le (m \cdot V^3 \cdot 4 \cdot \pi \cdot \varepsilon_0)/e^2 \approx 7.5 \cdot 10^{16}$ (Γц).

Для расчёта мощности излучения вблизи частоты $\omega_{
m эксn} \approx 15$ ГГц следует учитывать вклад электронов со скоростями V $\leq 1,8\cdot 10^4$ м/с. Доля таких электронов – в пределах процента и, следовательно, $W_T << W_{
m эксn}$.

Т.о., тормозным излучением невозможно объяснить, наблюдаемое в эксперименте, ЭМИ из плазмы ХД мощностью 10⁻³ Вт или 10⁻⁷ Вт на круговых частотах ω_{эксп}≈9...60 ГГц.

3. Циклотронное СВЧ излучение

Определены гармоники частоты циклотронного излучения, соответствующие известным экспериментальным результатам ($\omega_{3\kappa c \pi} \approx 9...60 \ \Gamma \Gamma \mu$) и соответствующая этим гармоникам мощность ЭМИ из плазмы XД, где характерные величины: $T_e \approx 30$ эВ, $n_e \approx 5 \cdot 10^{17} \ M^{-3}$, напряжённость электрического поля $E \approx 10^4 \ B/M$, индукция магнитного поля $B \approx 15 \ MT$ л в области излучения – в объёме $V_{\pi\pi} \approx 2 \cdot 10^{-4} \ M^3$ потока плазмы.

При том, что частота первой гармоники $\omega_{III} = e \cdot B/m \approx 2.7$ ГГц, лишь 5-я гармоника частоты циклотронного излучения электрона в магнитном поле соответствует экспериментальным результатам ($\omega_{3\kappa cn}/\omega_{III} \ge 5$) т.е. $5 \cdot \omega_{III} \ge \omega_{3\kappa cn} \cdot \min^{-1} = 12$ ГГц. Мощность ЭМИ на m-й гармонике из объёма плазмы V_{пл} с концентрацией n_e определена с использованием зависимостей [7, 8], как

$$W_{IIm} = \frac{e^2 \cdot \omega_{III}^2}{2 \cdot \pi \cdot \epsilon_0 \cdot c} \cdot \frac{(m+1) \cdot m^{2 \cdot m+1}}{(2 \cdot m+1)!} \cdot \beta_{\perp}^{2 \cdot m} \cdot V_{\Pi \pi} \cdot n_e,$$

а на 5-й гармонике (m=5), при $\beta_{\perp}=V_{\perp}/c \approx 6,3 \cdot 10^{-3}$, когда составляющая скорости электрона перпендикулярная вектору магнитной индукции оценена как $V_{\perp} \approx (T_e \cdot e \cdot 2/3 \cdot m)^{1/2}$, расчетная величина мощности $W_{IIm=5} \approx 10^{-24}$ BT << $W_{_{ЭКСП}}$ (10⁻³ BT или 10⁻⁷ BT). На последующих гармониках величина мощности излучения снижается $\sim \beta_{\perp}^{2 \cdot m}$, где $\beta_{\perp} << 1$.

4. СВЧ излучение электронов при их ускорении в пограничном слое плазмы

Рассчитаны: частота, мощность в дипольном приближении, следуя [8], энергия ЭМ излучения электрона за время его периодического движения через пограничный слой плазма-диэлектрик, где сосредоточен запирающий электроны перепад потенциалов, а также - полная мощность ЭМ излучения из пограничного слоя плазмы, с учётом потока электронов на этот слой плазмы.

На основе анализа результатов экспериментальных исследований [5] для оценочного расчёта выбраны характерные параметры слоя на границе плазма - стенка диэлектрика в условиях характерных для плазмы разрядного промежутка ХД. Толщина слоя, запирающего электроны в плазме, составляет δ≈4·10⁻⁴ м (рис. 2), а запирающий перепад потенциалов ∆φ_{пс}≈2,5 · Т_е (с учётом вторичной эмиссии электронов). Тогда период т_{пс} движения электронов через слой б со скоростью на границе $V_{eT} \approx (T_e \cdot e \cdot 2/m)^{1/2} \approx 2 \cdot 10^6$ м/с (при температуре $T_e \approx 30$ эВ) оценивается как $\tau_{nc} \approx 2 \cdot \delta / V_{eT}$. Круговая частота ЭМ излучения, соответствующая этому периодическому движению ускорением составит с $ω_{\rm nc} \approx 2 \cdot \pi / \tau_{\rm nc} = \pi \cdot V_{\rm eT} / \delta \approx 15 \cdot 10^9 \, \Gamma \mu.$

Рис. 2. Периодическое движение электронов через пограничный слой потока плазмы при обратном отражении

Следуя [8], в дипольном приближении мощность ЭМ излучения электрона, движущегося с ускорением а $\approx \Delta \phi_{nc}/\delta \cdot e/m$ через слой с перепадом потенциала $\Delta \phi_{nc}$, определена как $w_e = (a \cdot e)^2/(6 \cdot \pi \cdot \epsilon_0 \cdot c^3)$. Тогда энергия E_{τ} , излучаемая за период τ_{nc} движения электрона через слой δ , составит $E_{\tau} = w_e \cdot \tau_{nc}$.

Полная мощность ЭМ излучения W_{nc} из пограничного слоя плазмы в разрядной камере, площадь которого $S \approx \pi \cdot (D_{\rm H} + D_{\rm BH}) \cdot L_{ZIA}$ при диаметре наружной стенки $D_{\rm H} = 100$ мм внутренней - $D_{\rm BH} = 70$ мм и осевой протяжённости $L_{ZIA} = 10$ мм, с учётом плотности потока электронов на поверхность слоя порядка

 $n_e \cdot V_{eT} \approx 5 \cdot 10^{17} \cdot 2 \cdot 10^6 \approx 10^{24}$ 1/(с·м²), определена как $W_{nc} = E_{\tau} \cdot S \cdot n_e \cdot V_{eT} \approx 10^{-8} BT.$

На основе анализа распределения параметров плазмы, приведенных на рис. 1, 2 (размытая граница потока и малая температура электронов), сделан вывод о том, что толщина пограничного слоя плазма-вакуум превосходит толщину слоя плазмадиэлектрик (см. рис. 2), а перепад потенциалов в слое плазма-вакуум существенно ниже, что в результате обуславливает меньшую мощность ЭМИ из слоя плазма-вакуум, чем из слоя плазма-диэлектрик, конкретная величина которого не рассчитывалась.

Т.о., генерированное вследствие периодического ускорения электронов в пограничном слое плазмы ЭМИ мощностью $W_{nc} \approx 10^{-8}$ Вт по мощности и частоте близко к экспериментально определённому нижнему порогу (10^{-7} Вт – данные из России) мощности ЭМИ. Излучение на частотах больших, чем $\omega_{nc} \approx 5 \cdot 10^9$ Гц может генерироваться электронами, которые проникают на глубину меньше δ в пристеночный слой.

5. СВЧ излучение электронов при их ускорении на азимутальных неоднородностях потенциала

Вследствие азимутальной неоднородности плотности потока ионов и азимутального дрейфа электронов в скрещенных электрическом и магнитном полях в плазме возникают локальные области протяжённостью $l_h \sim (0, 1...1) \cdot R_{le} \approx R_{le}/2$ с перепадом потенциала $\Delta \phi_h \sim 1~B$ в азимутальном направлении (рис. 3), благодаря которым происходит компенсация неоднородностей плотности потока ионов дрейфующими электронами. При этом электроны, дрейфующие с постоянной скоростью V_{edr} = E/B в азимутальном направлении, проходя через перепады потенциала $\Delta \phi_h$ ускоряются/замедляются и генерируют в результате электромагнитное излучение, выходящее из плазмы без существенного ослабления. Частота такого излучения определяется соотношением $\omega_h \ge V_{edr}/l_h \approx 10^{10...11}$ Гц, при характерной для ХД скорости $V_{edr} \approx 2 \cdot 10^6$ м/с.

Следуя [8], в дипольном приближении мощность ЭМИ электрона движущегося с ускорением а $\approx \Delta \phi_h/l_h \cdot e/m \approx 1.6 \cdot 10^{14}~({\rm m/c}^2)$ через перепад потенциалов $\Delta \phi_h$ в локальной области определена как $w_h = (a \cdot e)^2/(6 \cdot \pi \cdot \epsilon_0 \cdot c^3) \approx 2 \cdot 10^{-25}~{\rm Br}.$

Область, в которой преимущественно генерируется излучение – участок потока плазмы в разрядном промежутке (где магнитная индукция и электрическое поле значительны) с площадью сечения $S \approx b_k \cdot D_{cp} \cdot \pi \approx 50 \cdot 10^{-4} \text{ м}^2$ и протяжённостью $L \approx 4 \cdot 10^{-2}$ м, с объёмом $V_{nn} \approx S \cdot L \approx 2 \cdot 10^{-4} \text{ м}^3$.

Рис. 3. ЭМ излучение, вызванное ускорением электронов в областях с локализованным перепадом потенциала Δφ_h в азимутальном направлении потока плазмы

Полная мощность ЭМИ W_h из XД, с учётом характерной величины концентрации электронов $n_e \approx 5 \cdot 10^{17} \text{ м}^{-3}$, определена как $W_h = w_h \cdot V_{n\pi} \cdot n_e \approx 2 \cdot 10^{-11}$ Вт.

Т.о., электромагнитным излучением мощностью $W_h \approx 2 \cdot 10^{-11}$ Вт на частоте $\omega_h \ge 10 \cdot 10^9$ Гц, генерируемым отдельными электронами при их ускорении на перепадах потенциала в азимутальном направлении потока плазмы, невозможно объяснить наблюдаемое в эксперименте ЭМИ из плазмы ХД мощностью 10^{-3} Вт или 10^{-7} Вт на круговых частотах $\omega_{3\kappaсn} \approx 9...60$ ГГц.

Однако следует учесть, что периодическое воздействие (со сменой знака) на поток дрейфующих в азимутальном направлении электронов со стороны локального слабого азимутального электрического поля (с малым перепадом потенциалов ~1 В) может играть роль предварительной фазировки электронов и, как следствие, привести к когерентному механизму излучения из каждой области протяжённостью порядка $l_h \approx R_{le}/2\approx 0.5$ мм. Тогда бы мощность w_{hC} когерентного ЭМИ электронов, движущихся как единый заряд $q = l_h^{3} \cdot n_e \cdot e \approx 10^{-10}$ (Кл) с ускорением $a \approx \Delta \phi_h / l_h \cdot e/m \approx 1.6 \cdot 10^{14} (m/c^2)$ через область l_h , определённая в дипольном приближении, следуя [8], составила бы $w_h = (a \cdot q)^2 / (6 \cdot \pi \cdot \epsilon_0 \cdot c^3) \approx 1.5 \cdot 10^{-7}$ Вт. При этом полная мощность ЭМИ W_{hC} из ХД, с учётом мощности когерентного ЭМ излучения w_{hC} из единичной области размером l_h и количества таких излучающих областей

$$N_{cell} = b_k / l_h \cdot L / l_h \cdot \pi \cdot D_{cp} / l_h = V_{\pi\pi} / l_h^3 \approx 10^6$$

условно выделенных в объёме V_{nn} потока плазмы, составила бы в пределе $W_{hC} = w_{hC} \cdot N_{cell} \approx 10^{-1}$ Вт. Необходимо заметить, что даже для оценочного расчёта W_{hC} требуется решать задачу о возможной авто-

фазировке электронов при их движении через области азимутальной неоднородности потенциала.

Предполагаемый «механизм» когерентного излучения на частоте $\omega_h \ge 10 \cdot 10^9$ Гц и предельной мощности $W_{hC} \approx 10^{-1}$ Вт перекрывал бы диапазон мощности излучения, наблюдаемый в эксперименте – 10^{-3} Вт и 10^{-7} Вт. Необходимо заметить, что протяжённость l_h локальных областей, где сосредоточен перепад потенциалов $\Delta \phi_h$, варьируется в диапазоне (0,1...1) ·R_{le}. Это определяет возможные частоты ~1/R_{le}~(1...10)· ω генерируемых ЭМ волн, что соответствует экспериментально определенному диапазону частот ЭМИ, распространяющемуся до ≈120 ГГц.

Заключение

Наиболее вероятными причинами электромагнитного излучения из плазмы ХД (в диапазоне частот $f \approx 1,5...10 \ {\Gamma}{\Gamma}{\mu}$ круговой $\omega_{3\kappa cn} \approx 2 \cdot \pi \cdot f \approx$ $\approx 9...60 \ {\Gamma}{\Gamma}{\mu}$, мощностью 10^{-7} и 10^{-3} Вт), непосредственно вследствие движения зарядов, являются:

1) ускоренное движение электронов в пограничном слое плазмы в разрядной камере ХД, что может привести к излучению мощностью $W_{nc} \approx 10^{-8}$ Вт;

2) возможное квазисинфазное ускоренное движение электронов в азимутальном направлении через локальные области протяжённостью менее ларморовского радиуса электрона с перепадом потенциала в азимутальном направлении порядка 1 В, что может привести к когерентному излучению из такой области в пределе суммарной излучаемой мощности $W_{hC} \le 0,1$ Вт на частотах $\omega \le 120$ ГГц.

Дальнейший поиск возможных причин генерирования СВЧ излучения запланирован по пути изучения трансформации плазменных волн в СВЧ волны в ХД.

Литература

1. Beiting, E.J. Spectral Characteristics of Radiated Emission from SPT-100 Hall Thrusters [Text] / E.J. Beiting // Proc. of the 29^{th} In. Electric Propulsion Conf. - Princeton (USA). - 2005. - 9 p. (Paper Nº 2005-221).

2. Кирдяшев, К.П. Высокочастотные волновые процессы в плазмодинамических системах [Текст] / К.П. Кирдяшев. – М.: Энергоатомиздат, 1982. –142 с.

3. Кирдяшев, К.П. Спектры СВЧ-колебаний в стационарном плазменном двигателе СПД-АТОН [Текст] / К.П. Кирдяшев, А.И. Бугрова, А.И. Морозов // Письма в ЖТФ. – 2008. – Т. 34, № 7. – С. 24-31. 4. Брухтий, В.И. Нестационарность электронных волновых процессов в плазменном ускорителе [Текст] / В.И. Брухтий, К.П. Кирдяшев, В.Л. Зарембо // ЖТФ. – 1996. – Т. 66, № 2. – С. 68-73.

5. Bugrova, A.I. Investigation of plasma local parameters in near wall field of channel of stationary plasma thruster of ATON type (SPT-ATON) [Text] / A.I. Bugrova, A.V. Desyatskov, V.K. Kharchevnikov // Proc. of the 3rd Intern. Conf. on Spacecraft Propulsion. - Cannes (France). – 2000. – P. 881-884.

6. Sommerville, J.D. Hall-Effect Thruster – Cathode Coupling Part II: Ion Beam and Near-Field Plume [Text] / J.D. Sommerville, L.B. King // Proc. of the 44^{th} Joint Propulsion Conf. - Cincinnati (USA). – 2008. – 16 p. (Paper $N \ge 2008-4996$).

7. Железняков, В.В. Электромагнитные волны в космической плазме (генерация и распространение) [Text] / В.В. Железняков. – М.: Наука, 1977. – 432 с.

8. Бекефи, Дж. Радиационные процессы в плазме [Текст]: пер. с англ. / Дж. Бекефи. - М.: Мир, 1971. – 430 с.

Поступила в редакцию 23.11.2012, рассмотрена на редколлегии 12.12.2012

Рецензент: д-р техн. наук, ст. науч. сотр. отдела "Вакуумная электроника" Б.П. Ефимов, Институт радиофизики и электроники им. А.Я. Усикова НАН Украины, Харьков.

ГЕНЕРУВАННЯ ЕЛЕКТРОМАГНІТНОГО ВИПРОМІЮВАННЯ СВЧ ДІАПАЗОНА У ПЛАЗМІ ДВИГУНА ХОЛЛА

С.А. Огієнко

Вивчаються механізми безпосереднього генерування електромагнітного випромінювання СВЧ діапазону у плазмі двигуна Холла, яке є перешкодою радіосигналу зв'язку космічного апарата скрізь іоносферу Землі. Для аналізу використано результати експериментів з визначення спектральної щільності потужності СВЧ випромінювання дослідниками з США (10⁻⁶ Вт/МГц) та Росії (10⁻¹⁰ Вт/МГц). У дипольному наближенні виконано розрахунок потужності електромагнітного випромінювання у характерному діапазоні f=1,5...10 ГГц. На основі цього розрахунку проаналізовано можливі механізми генерування СВЧ випромінювання – тормозний та циклотронний, а також випромінювання електронів при прискоренному русі скрізь локальні області плазми з перепадом потенціалу – у радіальному напрямку на границі та в азімутальному напрямку в об'ємі осісиметричного потока плазми – найбільш ймовірні причини генерування електромагнітного СВЧ випромінювання беспосередньо внаслідок руху зарядів у плазмі двигуна.

Ключові слова: плазма, двигун Холла, розрахунок потужності електромагнітного випромінювання, СВЧ діапазон.

MICROWAVE RANGE ELECTROMAGNETIC EMISSION GENERATION IN THE HALL THRUSTER PLASMA

S.A. Oghienko

A ways of direct generation of microwave range electromagnetic radiation in Hall thruster plasma, which is a handicap to a communication radio signal of a space vehicle through an Earth ionosphere are investigated. Results of experiments on determining of power spectral density of the microwave range radiation of researchers from the USA (10^{-6} W/MHz) and Russia (10^{-10} W/MHz) are used for the analyzing. Electromagnetic radiation power in a characteristic range f=1,5...10 GHz is calculated in dipole approximation. Basing on this calculation it was analyzed probable ways of microwave range radiation generation - braking and cyclotron, and also electron radiation by the accelerated motion through local areas with potential drop – in radial direction on border and in an azimuthal direction in volume of an axisymmetrical plasma stream - the most probable reasons of a microwave range electromagnetic radiation generation directly as result of movement of charges in plasma of the thruster.

Key words: plasma, Hall thruster, calculation of electromagnetic emission power, microwave range.

Огиенко Серей Анатольевич – канд. техн. наук, ст. науч. сотр. кафедры "Ракетные двигатели и энергоустановки летательных аппаратов", Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков, Украина, e-mail: oghienko@yahoo.com