УДК 004.78; 681.5

М.В. ПОТАПОВА

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

МЕТОДИКА УПРАВЛЕНИЯ БИЗНЕС-ПРОЦЕССАМИ В СОФТВЕРНОЙ ФИРМЕ НА ОСНОВЕ ПРИНЦИПА НЕДООПРЕДЕЛЕННОСТИ

Описана методика календарного планирования программных проектов (КППП) на основе принципа недоопрделенности. Основными этапами методики являются: задание множества общепроектных ограничений; реализация задачи удовлетворения ограничений; установление недоопределенного расширения ограничений на реализацию портфеля проектов софтверной фирмы; синтез ансамбля н-моделей портфеля проектов; построение модели компетенций команды исполнителей. Результатом реализации методики КППП является стабильная сеть, отражающая взаимодействие ансамбля н-моделей основных параметров портфеля проектов софтверной фирмы

Ключевые слова: программный проект, софтверная фирма, календарное планирование, недоопределенность, н-модель.

Введение

В современных условиях эффективность функционирования компаний по производству программного обеспечения во многом определяется качеством процессов календарного планирования проектов. Задачу календарного планирования конкретного проекта принято сводить к расчету возможных сценариев его реализации и нахождению оптимального сочетания в треугольнике «время-цена-качество» в условиях неопределенности [1, 2]. При этом причинами возникновения неопределенности являются, как правило, изменения, инициированные участниками проекта, и изменения, вызванные наступлением различного рода рисков. Определение оптимального количества принятых к реализации программных проектов усложняется тем, что сам результат проекта не определен, или определен в некотором приближении, поэтому вероятность изменений в них очень высока. Соответственно, экономический эффект от реализации проекта определить точно заранее не представляется возможным. В ситуации, когда неопределенными являются три параметра из трех, традиционное планирование проекта теряет всякий смысл, поэтому в программных проектах имеет смысл говорить о некой вероятности достижения неких результатов по срокам, цене и качеству.

Существующие системы управления проектами [1] в основном ориентированы на учет достигнутых показателей и прогнозирование результатов. Такие системы получили наибольшее распространение в традиционных отраслях проектной деятельности — строительстве, инженерии и в оборонной промышленности. Специализированные инструментальные средства для организации коллективной работы над про-

граммным проектом, например, Team Foundation Server компании Microsoft (TFS), могут интегрироваться с системами управления проектов общего назначения. Общими недостатками доступных инструментальных средств и известных методов планирования является отсутствие учета неполноты и приблизительности исходных данных, а также отсутствие гибкости анализа, то есть возможности уточнения параметров плана в процессе его выполнения [1].

Таким образом, необходимость создания специальной методики для компьютерной поддержки календарного планирования программных проектов объясняется существованием:

- неопределенности и многозначности самого понятия «эффективность проекта»,
- значительного количества ограничений между отдельными элементами плана проекта при сравнительно небольшом числе известных функциональных зависимостей между ними.

Задача удовлетворения ограничений впервые была сформулирована в 1970-ых годах [3]. В начале 1980-ых годов А.С. Нариньяни был предложен метод недоопределенных вычислений [4]. Концепция недоопределенности базируется на сопоставлении каждому объекту не одного точного значения, а некоторого подмножества из множества допустимых значений. Принцип недоопределенности трактует состояние частичной определенности как решение задачи, которое возможно на данном уровне знаний о задаче. При переходе задачи от более широкого пространства допустимых значений к более узкому возможна ситуация, когда становятся применимы другие (например, специализированные) методы решения, которые нельзя было применять в исходной постановке.

Цель статьи состоит в изложении, в рамках концепции недоопределенных вычислений, методики управления бизнес процессами в компании по производству программного обеспечения, в частности, календарным планированием реализации программных проектов.

1. Постановка задачи разработки методики календарного планирования программных проектов в IT - компании

В парадигме программирования в ограничениях постановка задачи реализации календарного планирования программных проектов формулируется следующим образом. Пусть на переменные $x_1, x_2 ...,$ х_п, областями значений которых являются множества X_1 , X_2 , ..., X_n , заданы ограничения на: фонд заработной платы; общую трудоемкость работ; средний уровень занятости исполнителей в проекте; на степень участия каждого исполнителя в конкретных работах проекта; период времени участие каждого исполнителя в проекте; допустимый период времени отсутствия нагрузки (простоя) для каждого исполнителя в ходе проекта; узкие места в проекте. Перечисленные выше ограничения формально заданы следующим образом: C_i (x_1 , x_2 , ..., x_n), i=1,k. Требуется найти наборы значений $< a_1$, a_2 , ..., $a_n >$ (a_i ∈ X_i), которые бы удовлетворяли всем ограничениям одновременно.

Одним из наиболее развитых и практически значимых подходов, относящихся к программированию в ограничениях, являются недоопределенные модели (Н - модели) [5]. Технология Н-моделей выделяется среди других подходов вычислительной мощностью, универсальностью и эффективностью. Фактически она является единственной технологией, которая позволяет решать задачу удовлетворения ограничений в самой общей постановке.

Задача удовлетворения ограничений на Н-моделях описывается как множество объектов предметной области, каждому из которых сопоставлено недоопределенное значение, и множество ограничений на этих объектах. При этом каждому объекту приписывается универсум и вид Н-расширения.

Все функции интерпретации ограничений, если их рассматривать как операторы, действующие на множестве Н-значений объектов модели, являются монотонными по включению и нерасширяющими. Двух этих свойств и конечности множества всех Н-значений достаточно для существования наибольшей (по включению) неподвижной точки произвольной системы таких операторов и гарантированного достижения этой точки за конечное число

шагов методом последовательных приближений. Его разновидностью является используемый в Н-моделях потоковый алгоритм вычислений [6].

Указанный алгоритм, дополненный соответствующими условиями проверки корректности полученных решений положен в основу методики календарного планирования программных проектов с учетом недоопределенности

2. Методика календарного планирования программных проектов на основе принципа недоопределенности

Исходными данными для реализации методики календарного планирования программных проектов (КППП) являются три взаимосвязанных интегральных показателя, определяющих эффективность реализации каждого программного проекта: выходной эффект (Q), время реализации проекта (B), затраты на реализацию проекта (3).

Эффективность программного проекта – функционал вида:

$$\mathfrak{I} = \mathfrak{f}(O, B, 3)$$

при определенных ограничениях на выходной эффект (Q), затраты (3) и время реализации проекта (B).

Количественное выражение для критерия Э формальными средствами получить весьма затруднительно из-за отсутствия в рассматриваемой области соответствующей статистической информации. В то же время для оценки по критерию Э целесообразно применить методы группового экспертного оценивания.

Первым этапом предлагаемой методики является задание множества общепроектных ограничений:

а) ограничение на фонд заработной платы

$$\sum_{i} \left(effort(t_i) \sum_{j} \left(\gamma_{t_i, exc_j} \cdot Z_{exc_j} \right) \right) \leq Z_{\Sigma},$$

где effort (t_i) – трудоемкость выполнения работы t_i исполнителями,

 γ_{t_i, exc_j} — коэффициент, характеризующий относительный объем работы t_i , выполненной j-м исполнителем exc_i, такой, что:

$$\forall exc_j \in E, \sum_i \gamma_{t_i, exc_j} = 1,$$

где Z_{exc_i} – заработная плата j-го исполнителя,

 Z_{Σ} — предельная величина фонда заработной платы:

б) ограничение на общую трудоемкость работ

$$\sum_{i} \text{effort} (t_i) \leq T_{\Sigma},$$

где T_{Σ} – предельно допустимая общая трудоем-кость работ;

в) ограничения на средний уровень занятости исполнителей в проекте предполагают, что могут быть назначены нижняя $\underline{\beta}$ и верхняя $\overline{\beta}$ границы, характеризующие среднюю занятость исполнителей:

$$\underline{\beta} \leq \frac{\sum_{i} effort(t_{i})}{\|E\| \cdot \tau_{T_{-}}} \leq \overline{\beta} ,$$

где $\tau_{T_{\Sigma}}$ – общая продолжительность работ;

г) ограничение на период времени участия каждого исполнителя в проекте устанавливает предельно допустимые значения относительной занятости любого человека в проектных работах

$$\forall j, \underline{\beta_j} \leq \sum_i \frac{\text{effort}(t_i, \text{exc}_j)}{\tau_{T_s}} \leq \overline{\beta_j};$$

д) ограничение на допустимый период времени отсутствия нагрузки (простоя) для каждого исполнителя в ходе проекта предполагает, что может быть задан некоторый период времени $t = (t_s \dots t_f)$, в течение которого исполнитель будет задействован в проекте

$$\forall i, \, \forall j, \left\{ \begin{aligned} t_s &\leq \underset{i}{min} (\tau_{start_{i,j}}), \\ t_f &\geq \underset{i}{max} (\tau_{finish_{i,j}}), \end{aligned} \right. ,$$

где $\tau_{\text{start}_{i,j}}$, $\tau_{\text{finish}_{i,j}}$ – время начала, окончания работ, в которых планируется участие j-го исполнителя;

е) ограничение на максимальную продолжительность интервала времени $\tau_{\rm free_{\rm доп}}$, в течение которого простаивание ј-го исполнителя (отсутствие загрузки проектными работами) считается допустимым:

$$\forall j, \, \Delta_{\tau_j} = \underset{r}{max} \Bigg(\overline{\tau_{free_{r,\,j}}} - \underline{\tau_{free_{r,\,j}}} \Bigg) \! \leq \tau_{free_{\,\textrm{доп}}} \, ,$$

где $\overline{\tau_{\text{free}_{r,j}}}, \underline{\tau_{\text{free}_{r,j}}}$ – время окончания, начала r-того интервала времени, когда j-ый исполнитель не принимает участия в проектных работах, то есть

$$\forall \tau_j, \, \overline{\tau_{free_{r,j}}} \leq \tau_j \prec \tau_{free_{r,j}}, \neg \exists i, \tau_{start_{i,j}} \leq \tau_j \prec \tau_{finish_{i,j}} \, ;$$

е) ограничение на узкие места в проекте, типа «бутылочное горло», когда существует работа, начало выполнения которой задерживается в течение значительного промежутка времени из-за неготовности незначительной доли ее входных продуктов:

$$\exists T_i \in T, \, \exists \Delta \tau_j \geq \Delta \tau_{\text{doff}}, \frac{\left\| WP_{in_{i, \, \Delta \tau_j}} \right\|}{\left\| WP_{in_{i}} \right\|} \leq \sigma_{i, \, \Delta \tau_j} \,,$$

где T_i — работа, $\Delta \tau_{\text{доп}}$ — максимально допустимый интервал времени ожидания недостающих для начала T_i работы входных продуктов $WP_{\text{in}_{i,\Delta\tau_{j}}}$, $\sigma_{i,\Delta\tau_{j}}$ - минимально допустимая доля входных продуктов, которые необходимы для начала T_i работы.

Вторым этапом методики КППП является реализация задачи удовлетворения ограничений.

Задача удовлетворения ограничений — это тройка P = (X, D, C), обозначаемая CSP(P), где X - конечное множество переменных $\{x1...xk\}$, D - функция, отображающая каждую переменную из X на множество объектов произвольного типа: $D: X - \{$ конечное множество объектов некоторого типа $\}$. Будем рассматривать D_{xi} как множество объектов, отображенных из x_i функцией D. Эти объекты называются значениями переменной x_i , а множество D_{xi} - областью x_i ; C - конечное (возможно пустое) множество ограничений на произвольном подмножестве переменных из X, то есть C - это множество наборов составных меток.

Каждое ограничение из С имеет вид одной из следующих формул:

$$y = x,$$

$$y = c,$$

$$V = f\{xi, ...,xn\},$$

где x, x_i, у — символы переменных из V,

с – константный символ,

f – функциональный символ арности n.

Более сложные ограничения распадаются на множество более простых (вышеприведенных видов) после введения дополнительных переменных [5].

Решением задачи удовлетворения ограничений (V, C) называется такое приписывание каждой переменной из V некоторого определенного значения из ее универсума, при котором выполняются все ограничения из C.

В общем случае все точные решения задачи, если таковые существуют, должны лежать в декартовом произведении таких н-значений.

Третий этап методики КППП связан с установлением недоопределенного расширения ограничений на реализацию конкретного проекта.

Недоопределенным расширением (н-расширением) универсума X называется любой конечный набор его подмножеств *X, содержащий \varnothing , и являющийся замкнутым относительно пересечения.

Эти свойства гарантируют однозначное представление * $[\xi]$ любого подмножества $\xi\subseteq X$ в н-расширении *X, а именно: * $[\xi]=\bigcap_{\xi\subseteq\varsigma\in^*X}$

Таким образом, представлением множества ξ в системе *X является минимальное подмножество из н-расширения *X, содержащее ς .

На четвертом этапе методики КППП синтезируется н-модель для конкретного планируемого проекта.

Обобщенная вычислительная модель (н-модель) M состоит из четырех множеств:

$$M=(V, C, W, CORR),$$

где V – множество н-объектов v из заданной предметной области;

C – множество ограничений на н-объектах из V;

W – множество функций присваивания;

CORR – множество функций проверки корректности.

С каждым объектом из V связаны недоопределенный тип данных (недоопределенное расширение некоторого универсума), начальное значение, функция присваивания и функция проверки корректности

Функция присваивания — это двуместная функция, реализуемая при каждой попытке присваивания очередного значения н-объекту и определяющая его новое значение как пересечение текущего и присваиваемого значений.

Функция проверки корректности — это унарный предикат, который проверяет непустоту значения н-объекта.

Реализация описываемого этапа методики КППП предполагает определение множества нобъектов из заданной предметной области и множества ограничений на этих объектах.

Каждая задача (t_{i,j,k}) является структурным расширением интервального н-объекта, включая: трудоемкость выполнения, время начала, время окончания. Отношения непосредственного предшествования между задачами, которые характеризуют частичную упорядоченность задач, задаваемое в виде неравенств входит в общую систему С — множество ограничений на н-объектах из V. В начале вычислений для всех задач времена начала и окончания совпадают с началом и окончанием всего проекта, в результате вычислений происходит уточнение этих сроков.

Пятый этап методики КППП связан с построением модели команды проекта в форме модели компетенций исполнителей.

Модель компетенций определена в декартовом пространстве $E \times T \to F_{\text{experience}}$ и представляется целыми константами для каждого сочетания сотрудник-работа, характеризуя имеющийся опыт участников проекта. Модель ролевых запретов определена на пространстве $T \times T \to F_{\text{ban}}$ в множестве констант логического типа.

Искомое решение задачи о назначениях ищется в декартовом произведении пространств сотрудники-задачи-время: $E \times T \times \tau \to Works$ как множество вещественных переменных, характеризующих относительную занятость сотрудника на исполнение определенной роли в определенный момент времени, при выполнении неравенств, входящих в общее множество ограничений:

– роль должна соответствовать модели компетенции и возможности исполнителя с определенным уровнем подчиненности ее исполнять;

 для каждого момента времени сумма занятостей сотрудника во всех исполняемых ролях не должна превышать 1.

Алгоритм вычислений, реализованный в н-моделях останавливается, когда сеть стабилизируется или хотя бы один из н-объектов становится некорректным. В последнем случае устанавливается противоречивость исходной н-модели.

Результамом реализации методики КППП является стабильная сеть, отражающая взаимодействие ансамбля н-моделей основных параметров планируемого проекта.

Выводы

- 1. Предложенная методика КППП предоставляет возможность корректной замены исходной постановки задачи многокритериальной оптимизации на процесс поиска такого множества н- моделей, отражающих варианты работ и исполнителей, при котором все частные показатели эффективности проекта удовлетворяют соответствующим ограничениям.
- 2. Методика КППП в общем случае содержит два основных блока, соответствующих процессам создания продукта и управления проектом;
- 3. Методика КППП предполагает построение и реализацию модели субъектов управления проектной команды, которая предназначена для учета ограничений, характеризующих: опыт решения задач различного типа, запрет на одновременное выполнение двух определенных ролей одним исполнителем, а также фактическую возможность выполнения конкретной задачи определенным исполнителем описание команды проекта.
- 4. Методика КППП дает возможность учета дополнительных общепроектных ограничений, к которым относятся: ограничение на фонд заработной платы, на общую трудоемкость работ, на средний уровень занятости исполнителей в проекте, на степень участия каждого исполнителя в конкретных работах проекта и т.д.
- 5. В основу методики КППП положены вычисления на н-моделях, которые по своей природе представляют собой высокопараллельный процесс, управлющийся потоком данных. Изменение значе-

ний переменных, располагающихся в общей памяти, автоматически влечет интерпретацию тех ограничений, для которых эти переменные являются аргументами.

Литература

- 1. Нарусбаев, А.А. Введение в теорию проектных решений [Текст] / А.А. Нарусбаев. Л.: Изд-во «Судостроение», 1976. 221 с.
- 2. Эддоус, М. Методы принятия решений [Текст] / М. Эддоус, Р. Стэнсфилд. М.: Аудит, Юнити, 1997. 590 с.
- 3. Телерман, В.В. Удовлетворение ограничений в задачах математического программирования [Текст] / В.В. Телерман, Д.М. Ушаков // Вычислительные технологии. 1998. Т. 3, № 2. С. 45—54.

- 4. Нариньяни, А.С. Недоопределенность в системах представления и обработки знаний [Текст] / А.С. Нариньяни // Изв. АН СССР. Техн. кибернетика. 1986. №5. С. 3—28.
- 5. Телерман, В.В. Недоопределенные модели: формализация подхода и перспективы развития [Текст] / В.В. Телерман, Д.М. Ушаков // Проблемы представления и обработки не полностью определенных знаний: сб. тр. РосНИИ Искусственного Интеллекта. М.: Мир, 1996. С. 7–30.
- 6. Нариньяни, А.С. Интеллектуальная технология недоопределенного календарно-ресурсного планирования и управления проектами Тіте-ЕХ [Текст] / А.С. Нариньяни, И.Д. Гофман, Д.А. Инишев // Информационные технологии. 2010. № 2. С. 2–32.

Поступила в редакцию 3.06.2013, рассмотрена на редколлегии 12.06.2013

Рецензент: д-р техн. наук, проф., проф. кафедры программной инженерии С.Ю. Шабанов-Кушнаренко, ХНУРЭ, Харьков.

МЕТОДИКА УПРАВЛІННЯ БІЗНЕС-ПРОЦЕСАМИ В СОФТВЕРНІЙ ФІРМІ НА ОСНОВІ ПРИНЦИПУ НЕДОВИЗНАЧЕНОСТІ

М.В. Потапова

Описана методика календарного планування програмних проектів (КППП) на основі принципу недовизначеності. Основними етапами методики ϵ : завдання безлічі загальнопроектних обмежень; реалізація задачі задоволення обмежень; встановлення недовизначеного розширення обмежень на реалізацію портфеля проектів софтверної фірми; синтез ансамблю н-моделей портфеля проектів; синтез ансамблю н-моделей портфеля проектів; побудова моделі компетенцій команди виконавців. Результатом реалізації методики КППП ϵ стабільна мережа, що відобража ϵ вза ϵ модію ансамблю н-моделей основних параметрів портфеля проектів софтверної фірми.

Ключові слова: програмний проект, софтверна фірма, календарне планування, недовизначеність, н-модель.

BUSINESS PROCESS MANAGEMENT METHODS IN SOFTWARE FIRM ON THE BASIS OF UNDERDETERMINED PRINCIPLE

M.V. Potapova

The methods of the scheduling of program projects (SPP) on the basis of the principle of an underdetermined is described. The main stages of a methods are: job of a set of all-project restrictions; implementation of the task of satisfaction of restrictions; establishment of underdetermined extension of restrictions on implementation of a projects portfolio of software company; synthesis of ensemble of N-models of a projects portfolio; creation of model of competences of a command of performers. Result of implementation of a technique of SPP is the stable network reflecting interaction of ensemble of N-models of key parameters of a projects portfolio of software company.

Keywords: program project, software company, scheduling, underdetermined, N-model.

Потапова Марина Викторовна — заведующая лабораторией кафедры финансов Национального аэрокосмического университета им. Н.Е. Жуковского «ХАИ», Харьков, Украина, e-mail: marina-k604@yandex.ru.