УДК 621.452.3:669.018.44:539.431

Д.Ф. СИМБИРСКИЙ, А.А. БРУНАК

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

МОДЕЛЬНЫЕ ИССЛЕДОВАНИЯ ВЛИЯНИЯ ВЫДЕРЖЕК В ЦИКЛЕ НА СОПРОТИВЛЕНИЕ МАТЕРИАЛА МАЛОЦИКЛОВОЙ УСТАЛОСТИ С ИСПОЛЬЗОВАНИЕМ ЗАКОНОМЕРНОСТЕЙ ПОВТОРНО-СТАТИЧЕСКОГО НАГРУЖЕНИЯ

В работе приведены результаты модельных исследований актуальной проблемы влияния выдержек при максимальных режимах малоциклического нагружения (МЦН) на малоцикловую усталость (МЦУ) жаропрочных материалов для турбин ГТД. Использованы закономерности повторно-статического нагружения (ПСН) материала и удобный в практической реализации метод линейного суммирования повреждений от МЦН и ПСН с выдержками различной продолжительности. Получено нелинейное уравнение суммирования, решение которого позволяет определить долговечность (ресурс) материала в зависимости от продолжительности выдержки. В результате исследований, проведенных для жаропрочных сплавов ЖС-6К и ЭИ-437Б, получены, по крайней мере, на качественном уровне, важные выводы и рекомендации, которые в одном из случаев нашли экспериментальное количественное подтверждение.

Ключевые слова: повторно-статическое нагружение, малоцикловая усталость, длительная прочность, выдержки в цикле, повреждаемость.

1. Постановка задачи

Одной из наиболее актуальных проблем при проектировании, испытаниях, сертификации и эксплуатации по техническому состоянию ГТД является прогнозирование, установление, учет выработки и продление назначенных ресурсов основных деталей двигателей, работающих в условиях комплексного нагружения. Комплексность нагружения заключается в чередовании за время полетных циклов двигателя основных повреждающих видов его нагружения: статических (при повышенной температуре), циклических мало- и многоцикловых, а также повторно-статических (МЦН, МнЦН и ПСН соответственно). При указанных нагружениях проявляются такие свойства материала как ползучесть и длительная прочность (ДП), сопротивление малоцикловой, многоцикловой и повторно-статической усталости (МЦУ, МнЦУ и ПСУ) соответственно.

Существенное взаимное влияние видов нагружения на ресурс деталей двигателя неоднократно подчеркивалось в технической литературе, например в монографии [1]. Однако, несмотря на значительный практический интерес, в отраслевых нормативных материалах отсутствуют апробированные общепринятые методики и рекомендации по проблеме комплексного нагружения в силу ее очевидной сложности и недостаточной изученности.

Следует отметить, что многие исследования

посвящены изучению влияния на ресурс деталей парных корреляций перечисленных выше составляющих комплексного нагружения. В первую очередь это исследование влияния выдержек в цикле при максимальных температурах и напряжениях на накопление повреждений и пределы циклической усталости (МЦУ, МнЦУ и ПСУ) материала или, поиному, - исследование методов линейного или нелинейного суммирования повреждений от циклических нагружений и выдержек в цикле. При выборе методов из числа наиболее подходящих для практики можно, в частности, воспользоваться результатами представительного сравнительного анализа их возможностей, проведенного в [1], в котором учитывались как эффективность метода, так и объемы предварительных экспериментальных исследований, необходимых для его реализации.

В связи с изложенным, в настоящей статье была поставлена задача провести модельные исследования простейшего метода решения указанной проблемы, использующего характеристики ДП, МЦУ и ПСУ материала, закономерности ПСН, а также линейное суммирование разнородных повреждений.

2. Основные закономерности ПСН материала

Первоначальное понятие ПСН как распространенной формы отнулевого циклического нагружения было сформулировано в трудах И.А. Биргера, Р.М. Шнейдеровича, Н.И. Марина и ряда других исследователей, а его основные закономерности в современном представлении были исследованы в работах В.И. Цейтлина, Н.Д. Кузнецова, Д.Г Федорченко, Ю.М. Анурова, М.Е. Колотникова [1-5] и других. В их основу положено введенное В.И. Цейтлиным [2] понятие коэффициента чувствительности K_z к количеству z повторных нагружений материала статическим напряжением σ (при повышенных температурах) или, что то же, прерываний такого нагружения. При заданной температуре T зависимость для K_z имеет вид

$$K_{z} = \frac{\sigma(t_{p})}{\sigma[t_{p}(z)]},$$
(1)

где $\sigma(t_p)$ – предел ДП материала, определяемый при заданных температуре T и времени до разрушения t_p при однократном (z=1) нагружении по следующей общепринятой модели ДП:

$$\sigma^{m} \cdot t_{p} = A, \qquad (2)$$

или в логарифмических координатах:

$$\mathbf{m} \cdot \mathbf{lg} \, \boldsymbol{\sigma} + \mathbf{lg} \, \mathbf{t}_{\mathbf{p}} = \mathbf{lg} \, \mathbf{A} \,, \tag{3}$$

где t_p и $t_p(z)$ – времена до разрушения для напряжения $\sigma(t_p)$ при однократном (z=1) и z-кратном нагружениях соответственно;

 $\sigma[t_{p}(z)]$ – предел ДП прочности материала при температуре T и времени до разрушения $t_{p}(z)$.

Напряжение $\sigma_{z}[t_{p}(z)] = \sigma(t_{p})$ можно, на наш взгляд, квалифицировать как <u>предел ПСУ материала</u>.

На рис. 1 приведены геометрические и алгебраические представления, поясняющие физический смысл формулы (1) и ее составляющих. Так, в работах [2, 3] показано, что $K_z < 1$ и что тогда из (1) следует неравенство $t_p(z) < t_p$. Это, по мнению авторов, означает, что при ПСН фактическая долговечность соответствует некоторому фиктивному напряжению

$$\sigma\left[t_{p}(z)\right] = \frac{1}{K_{z}} \cdot \sigma\left(t_{p}\right) > \sigma\left(t_{p}\right).$$

Кроме того, авторы [2, 3] допускают возможность использования для построения модели II(z) (рис. 1) аналогичной (2) зависимости с таким же значением параметра m, а также полагают независимость m в модели II(z) от величины приложенного напряжения $\sigma(t_p) = \sigma_z[t_p(z)]$.

Рис. 1. Взаимное расположение исходной модели ДП I(z = 1) и ее аналога II(z) из моделей ПСУ при z > 1

Это определяет параллельное расположение моделей I и II (рис. 1), наклоны которых зависят от m.

При указанных допущениях можно получить важное для дальнейшего изложения соотношение между $t_p(z)$ и t_p (рис. 1). Для этого из (2) найдем

$$t_p = A \cdot [\sigma]^{-m}$$

$$t_{p}(z) = A \cdot \left\{ \sigma_{z} \left[t_{p}(z) \right] \right\}^{-m} = A \cdot \left[\sigma(t_{p}) \cdot K_{z} \right]^{-m},$$

а из этих равенств получим, что

И

$$\mathbf{t}_{\mathbf{p}}(\mathbf{z}) = \mathbf{t}_{\mathbf{p}} \cdot \left[\mathbf{K}_{\mathbf{z}}\right]^{\mathrm{m}}.$$
 (4)

Зависимость K_z от z, определяющая основные закономерности ПСН, находится из экспериментально получаемых моделей ПСУ (кривая II(z) на рис. 1 – одна из этих моделей). В работе [5] зависимости K_z от z были найдены в пределах до $z=10^3...10^5$ и с достаточной точностью аппроксимированы линейным полулогарифмическим выражением:

$$\mathbf{K}_{\mathbf{z}} = -\mathbf{k}_1 \cdot \mathbf{lg} \, \mathbf{z} + \mathbf{k}_2. \tag{5}$$

3. Линейное суммирование повреждений материала от взаимодействия малоциклового нагружения и ПСН с выдержками в цикле

Будем полагать [5], что в рассматриваемом случае суммарное повреждение Π_{Σ} является результатом линейного суммирования двух составляющих повреждений: $\Pi_{M \amalg H} = \frac{z}{z_p}$, вызываемого отнулевым (r = 0) треугольным циклом МЦН, и

 $\Pi_{\Pi CH} = \frac{\tau_{\Sigma}}{t_p(z)}$, вызываемого ПСН с выдержками τ_B

при каждом прерывании нагружения, суммарная длительность которых $t_{\Sigma} = z \cdot \tau_B$.

Здесь z – количество треугольных циклов МЦН и, одновременно, – прерываний нагружения в ПСН; z_p – количество треугольных циклов до разрушения; $t_p(z)$ – суммарное время выдержек до разрушения с учетом прерываний нагружения в ПСН.

Условие разрушения материала при указанных совместных нагружениях с учетом соотношения (4) может быть записано в виде

$$\Pi_{\Sigma} = \Pi_{\mathrm{MLH}} + \Pi_{\mathrm{\Pi CH}} = \frac{z_{p\Sigma}}{z_{p}} + \frac{z_{p\Sigma} \cdot \tau_{\mathrm{B}}}{t_{p} \cdot [\mathrm{K}_{z}]^{m}} \ge 1, \quad (6)$$

где $z_{p\Sigma}$ – количество циклов (с выдержками τ_B в каждом) до разрушения, зависящее от одних и тех же значений $\sigma(t_p)$ и σ , температуры T и от продолжительности выдержек τ_B .

При этом:

 – z_p определяется по моделям МЦУ материала при мягком нагружении в зависимости от размаха напряжений σ и рабочей температуры Т;

 $-\sigma(t_p)$ определяется из исходной модели ДП (2) (кривая I(z=1) на рис. 1).

4. Исходные данные

Модельные исследования влияния выдержек в цикле на МЦУ материала проведены нами для жаропрочных сплавов ЭИ-437Б и ЖС-6К с использованием следующего комплекта прочностных характеристик (при одинаковых рабочих температурах T), а именно:

1) исходных моделей ДП (z=1);

 моделей МЦУ для отнулевого треугольного цикла;

 моделей ДП с z-кратным прерыванием нагружения или, что то же – моделей ПСУ;

4) зависимостей K_z от количества прерываний z.

Из технической литературы нами были подобраны полные комплекты характеристик для указанных сплавов и следующих рабочих температур: для сплава ЭИ-437Б при 750°С и для сплава ЖС-6К при 800°С и 1000°С.

Эти характеристики представлены на рис. 2 – 4.

Приведенные на рис. 2 – 4 характеристики материалов были <u>аппроксимированы для ввода в (6)</u> следующим образом:

Рис. 2. Кривые МЦУ (а), ДП и ПСУ для различных z>1 (б) сплава ЖС-6К для температур 800°С и 1000°С

Рис. 3. Кривые МЦУ (а), ДП и ПСУ для различных z > 1 (б) сплава ЭИ-437Б для температуры 750°С

Рис. 4. Зависимости коэффициента К_z от количества прерываний (нагружений) z для сплавов ЖС-6К и ЭИ-437Б

1. Значения σ для соответствующих t_p и T,

приведенные в [6] в форме табличных данных, обобщены в форме модели Ларсона-Миллера. В последующем для сплавов ЖС-6К (рабочие температуры 800°С и 1000°С) и ЭИ-437Б (750°С) были определены общепринятым способом значения параметров m(T) и A(T) модели ДП (2), которые составили: m(T)=7,1; 3,71; 6,35 и A(T)=2,51 · 10²¹; 3,98 · 10⁹; 4,57 · 10¹⁷ соответственно. Таблица 1

2. В качестве характеристик МЦУ были использованы следующие данные по симметричному треугольному циклу: по ЖС-6К - [7] и по ЭИ-437Б -[8]. Для перехода к отнулевому циклу использовалась методика, приведенная в [9].

Так как модели МЦУ в логарифмических координатах имеют перегибы в области $z \approx 1.10^3$, нами для ввода в (6) была принята модель МЦУ при мягком нагружении в виде

$$(\sigma)^{M_{i}(T)} \cdot z = C_{i}(T), i=1,2.$$
 (7)

 $1.46 \cdot 10^{39}$

Параметры M_i(T) и C_i(T) определялись по указанной исходной информации с применением метода наименьших квадратов. Результаты их вычисления приведены в табл. 1.

Параметры моделей МЦУ (7) и K_z от z (5)									
Материал	T, ℃	M_1/M_2	$\frac{C_1}{C_2}$	k_1 / k_2					
ЖС-6К	800	5,49/30,9	$\frac{1,87\cdot10^{16}}{6,72\cdot10^{77}}$	0,03/0,98					
	1000	8,32/14,1	$\frac{5,41\cdot10^{22}}{3,95\cdot10^{36}}$	0,08/0,91					
ЭИ-437Б	750	10.3/14.2	$\frac{2,15\cdot10^{29}}{2,15\cdot10^{29}}$	0.08/0.91					

3. Для аппроксимации зависимости
$$K_z$$
 от z ис-
пользовалась модель (5), параметры которой k_1 и k_2
в соответствии с [5] приведены в таблице 1.

Подставив все приведенные выше аппроксимации характеристик материалов в формулу (6), получим следующее нелинейное уравнение для суммирования повреждений:

$$\frac{z_{p\Sigma} \cdot (\sigma)^{M_i(T)}}{C_i(T)} + \frac{z_{p\Sigma} \cdot \tau_B \cdot \sigma^m}{A(T)(k_2 - k_1 \lg z_{p\Sigma})^m} = 1. \quad (8)$$

Путем численного решения этого уравнения можно для различных выдержек τ_B определить числа циклов z_{pΣ} до разрушения, учитывающие совместное действие МЦН и ПСН с выдержками, а также величины повреждений П_{МШ} и П_{ПСН}.

5. Исследования влияния выдержек в цикле на МЦУ сплавов ЖС-6К и ЭИ-437Б

5.1. Методика исследований

Методика исследования основана на решениях уравнения (8) относительно z_{pΣ} при различных значениях выдержек τ_B .

Решение нелинейного уравнения (8) выполнялось при помощи средств подбора параметров пакета Excel. Предварительно было получено подтверждение их высокой точности с помощью известного метода половинного деления, программно реализованного на языке С++.

Методику рассмотрим на примере одного из основных случаев исследования – для сплава ЖС-6К при T=1000°С. Для этого случая в табл. 2 приведен вариант расчета z_{pΣ}, составляющих повреждений Π_{MLH} и $\Pi_{\Pi \text{CH}}$, а также их отношение $\Psi = \frac{\Pi_{\Pi \text{CH}}}{\Pi_{\text{MLH}}}$ для

сплава ЖС-6К при 1000°С для нескольких характерных величин т_в. Порядок следования столбцов в таблице соответствует последовательности получения решений уравнения (8).

Таблица 2

6, МПа	Т, ч	tp, ч	Kz	tp(z), ч	z, циклов	$\Pi_{\Pi C Y}$	П _{МЦУ}	$ \Psi $
200	0,0028 (10 сек)	11,61	0,674	2,69	883	0,911	0,089	10,28
250		5,07	0,714	1,45	281	0,537	0,463	1,157
300		2,58	0,752	0,9	94	0,292	0,708	0,4123
350		1,46	0,79	0,61	32	0,144	0,856	0,1687
400		0,87	0,826	0,44	11	0,072	0,928	0,0774
150	0,0167 (1 мин)	33,74	0,693	8,65	518	0,999	0,001	995,3
200		11,61	0,725	3,52	207	0,979	0,021	47,2
250		5,07	0,753	1,77	91	0,851	0,149	5,694
300		2,58	0,78	1,03	42	0,684	0,316	2,16
350		1,46	0,808	0,66	19	0,483	0,517	0,9334
400		0,87	0,836	0,46	8	0,307	0,693	0,4436
100	0,0833 (5 мин)	151,87	0,696	39,56	475	1	0	301238
150		33,74	0,74	11,05	133	1	0	3894
200		11,61	0,772	4,44	53	0,995	0,005	186,7
250		5,07	0,798	2,19	25	0,959	0,041	23,02
300		2,58	0,82	1,23	13	0,899	0,101	8,974
350		1,46	0,841	0,76	7	0,801	0,199	4,02
100	1	151,87	0,769	57,39	57	1	0	2491692
150		33,74	0,814	15,74	16	1	0	32806
200		11,61	0,846	6,25	6	0,999	0,001	1593,3
250		5,07	0,871	3,04	3	0,996	0,004	199,1

Результаты вычислений z_{DΣ}, П_{МЦН}, П_{ПСН} и Ψ сплава ЖС-6К (1000°)

На рис. 5 приведены соответствующие графические зависимости, а на рис. 6 – зависимость коэффициента Ψ от значений $z_{p\Sigma}$.

Рис. 5. Значения повреждений П_{ПСН} и П_{МЦН} (штриховые линии) для сплава ЖС-6К (1000°С)

Рис. 6. Зависимости Ψ от числа циклов до разрушения и длительности выдержек в цикле для сплава ЖС-6К (1000°С)

На графике рис. 5 нанесены характерные точки z_{60} , z_5 , z_1 и $z_{0,17}$ для соответствующих значений выдержек в цикле, которые являются конечными границами области (по оси $z_{p\Sigma}$) влияния Π_{MLH} (не менее 1% от $\Pi_{\Pi CH}$) и начальными границами области полного превалирования $\Pi_{\Pi CH}$, в которой $\Pi_{MLH} < 0,01$ от $\Pi_{\Pi CH}$. Для рассматриваемого случая при выдержке $\tau_B=0,17$ мин $z_{0,17}=1778$ ц; 1 мин $-z_1=270$ ц; 5 мин $-z_5=44$ ц; 60 мин $-z_{60}=2$ ц, что означает существенные расширения области (по оси $z_{p\Sigma}$) превалирующей роли $\Pi_{\Pi CH}$.

Таким образом, величина Ψ весьма удобна для количественных представлений и оценок влияния значимых Π_{MLH} и $\Pi_{\Pi CH}$, а также факторов рассматриваемого явления (типа материала и его характеристик, рабочей температуры, величины выдержки τ_{B} в цикле нагружения и др.) на долговечность (ресурс) материала $z_{p\Sigma}$.

5.2. Результаты исследований

Кроме указанного выше случая (ЖС-6К при T=1000°С), были рассмотрены случаи для сплавов ЖС-6К при 800°С и ЭИ-437Б при 750°С, результаты которых в форме зависимости Ψ от $z_{p\Sigma}$ приведены на рис. 7, 8.

Рис. 8. Зависимости Ψ от числа циклов до разрушения и длительности выдержек в цикле для сплава ЭИ-437Б (750°С)

Их сравнительный анализ показывает, что для сплава ЭИ-437Б (750°С) (рис. 8) область превалирования П_{ПСН} хотя и сдвигается в сторону больших $z_{p\Sigma}$, но остается подобной для случая ЖС-6К (1000°С). Для случае же ЖС-6К (800°С) (рис. 7) характер функций Ψ для различных значений выдержек значительно изменяется, смещаясь (по оси $z_{p\Sigma}$) в область МнЦН до $z_{p\Sigma}=10^7...10^8$, которая в настоящем исследовании не рассматривалась в силу недостаточности сведений о зависимости K_z от z, ограниченных значениями z= $10^3...10^5$.

С помощью предложенной методики нами были внесены коррективы в известные характеристики МЦУ (рис. 3, а и рис 3, б) для рассматриваемых трех случаев, учитывающие влияние длительности выдержек в цикле малоциклового нагружения при максимальных напряжениях и температурах на $z_{p\Sigma}$. На рис. 9 в качестве примера приведены соответствующие кривые МЦУ сплава ЭИ-437Б при T=750°С для некоторых значений т_в.

5.3. Сравнение экспериментальных и расчетных данных

Для сравнения были привлечены экспериментальные данные из монографии [10] по сплаву ЭИ-437Б при температуре T=750°С, приведенные на рис. 10. Они показывают характер отклонений от вертикалей линий $\lg z(T_i) = \text{const}$ или уменьшения начальных (при $\tau_B=0$) значений $\lg z_p(T_i)$ при появлении выдержек τ_B в цикле малоциклового нагружения.

Рис. 10. Зависимость $z_p(\sigma, T)$ от величины

выдержки в цикле т_в для сплава ЭИ-437Б [5]. Точки – данные расчета по предложенной модели суммирования повреждений: ▲ – σ =400МПа, ●– σ=350МПа, ■– σ =300МПа Нанесенные на график расчетные значения $z_{p\Sigma}$ для температуры T=750°C получены нами в полном соответствии с набором характеристик сплава ЭИ-437Б для этой температуры. При получении расчетных значений для температур 800°C и 1000°C необходимые характеристики были спрогнозированы нами на основе данных для температуры 750°C. В целом, можно отметить высокий уровень качественного и количественного совпадения результатов экспериментов и расчетов.

Выводы

 В работе предложена методика учета влияния на МЦУ выдержек при максимальных напряжениях и температурах цикла, использующая закономерности ПСН и линейное суммирование повреждений от МЦН треугольной формы и ПСН с выдержками разной продолжительности.

2. Получено нелинейное уравнение суммирования указанных повреждений и предложен метод его решения относительно результирующего числа циклов до разрушения $z_{p\Sigma}$ и составляющих повреждений Π_{MILH} и $\Pi_{\Pi CH}$.

 В качестве эффективного показателя взаимного влияния составляющих повреждений при различных факторах нагружения предложена зависи-

мость
$$\Psi = \frac{\Pi_{\Pi CH}}{\Pi_{M I I H}}$$
 от $z_{p\Sigma}$.

4. Предложенная методика в полной мере реализована для жаропрочных сплавов ЖС-6К при рабочих температурах 800°С и 1000°С и ЭИ-437Б при температуре 750°С.

5. Для сплава ЭИ-437Б обнаружено хорошее количественное и качественное совпадение известных литературных экспериментальных данных с расчетами по предложенной методике.

Литература

1. Колотников, М.Е. Предельное состояние и прогнозирование ресурса ГТД в условиях многокомпонентного нагружения [Текст] / М.Е. Колотников; под ред. д.т.н., проф. В.М. Чепкина. – Рыбинск: Издво РГАТА, 2003. –136 с.

2. Цейтлин, В.И. Оценка прочности деталей в условиях многокомпонентного нагружения [Текст] / В.И. Цейтлин // Труды Куйбышевского авиационного института. – Вып. 63. – Куйбышев, 1975. – С. 123–131.

3. Кузнецов, Н.Д. Эквивалентные испытания газотурбинных двигателей [Текст] / Н.Д.Кузнецов, В.И. Цейтлин. – М.: Машиностроение, 1976. – 216 с.

4. Цейтлин, В.И. Оценка циклической долговечности деталей, работающих при сложных программах нагружения [Текст] / В.И. Цейтлин, Д.Г. Федорченко // Проблемы прочности. – 1983. – № 2. – С. 13-19.

5. Ануров, Ю.М. Основы обеспечения прочностной надежности авиационных двигателей и силовых установок [Текст] / Ю.М. Ануров, Д.Г. Федорченко. – СПб.: Изд-во СПбГПУ, 2004. – 390 с.

6. Биргер, И.А. Расчет на прочность деталей машин [Текст]: справ. / И.А. Биргер, Б.Ф. Шорр, Г.Б. Иосилевич. – М.: Машиностроение, 1979. – 702 с.

7. Синайский, Б.Н. О температурной зависимости усталостной прочности жаропрочных никелевых сплавов [Текст] / Б.Н. Синайский, А.Д. Погребняк, И.И. Ищенко // Проблемы прочности. – 1976. – № 5. – С. 13-18. 8. Орлов, А.Ф. Некоторые особенности накопления повреждений для ГТД при малоцикловом нагружении и повышенных температурах [Текст] / А.Ф. Орлов, Б.Ф. Балашов // Малоцикловая усталость элементов конструкций: тез. докл. и сообщ. III всесоюзн. симпозиума. – Вильнюс, 1979. – Вып. 1. – С. Эй–94.

9. Ресурсное проектирование авиационных ГТД. Руководство для конструкторов [Текст] / Б.Ф. Балашов, И.А. Биргер, Н.Г. Бычков и др. – М.: ЦИАМ, 1990. – Вып. 1. – 208 с.

10. Термопрочность деталей машин [Текст] / Под ред. И.А. Биргера, Б.Ф. Шорра. – М: Машиностроение, 1975. – 455 с.

Поступила в редакцию 30.05.2013, рассмотрена на редколлегии 14.06.2013

Рецензент: д-р техн. наук, проф. В.Н. Доценко, Национальный аэрокосмический университет им. Н.Е. Жу-ковского «ХАИ», Харьков.

МОДЕЛЬНІ ДОСЛІДЖЕННЯ ВПЛИВУ ВИТРИМКИ В ЦИКЛІ НА ОПІР МАТЕРІАЛУ МАЛОЦИКЛОВІЙ ВТОМІ З ВИКОРИСТАННЯМ ЗАКОНОМІРНОСТЕЙ ПОВТОРНО-СТАТИЧНОГО НАВАНТАЖЕННЯ

Д.Ф. Симбірський, А.О. Брунак

В роботі наведені результати модельних досліджень актуальної проблеми впливу витримок при максимальних режимах малоциклового навантаження (МЦН) на малоциклову втому (МЦВ) жароміцних матеріалів для турбін АГТД. Використані закономірності повторно-статичного навантаження (ПСН) матеріалу і зручний в практичній реалізації метод підсумовування пошкоджень від МЦН і ПСН з витримками різної тривалості. Отримано нелінійне рівняння сумування, рішення якого дозволяє визначити довговічність (ресурс) матеріалу в залежності від тривалості витримки. В результаті досліджень, проведених для жароміцних сплавів ЖС-6К і ЕІ-437Б, отримані, принаймні, на якісному рівні, важливі висновки і рекомендації, які в одному із випадків знайшли експериментальне кількісне підтвердження.

Ключові слова: повторно-статичне навантаження, малоциклова втома, тривала міцність, витримки в циклі, пошкоджуваність.

MODEL ANALYSES OF HOLD IMPACT IN THE CYCLE ON THE MATERIAL RESISTANCE TO THE LOW-CYCLE FATIGUE USING LAWS OF REPEATED-STATIC LOADING

D.F. Simbirskij, A.A. Brunak

This article deals with the results of model analyses of actual problem of hold impact (at maximal cycle loading modes) on low-cycle fatigue (LCF) of heat-resistant materials used in aircraft gas-turbine engines. Authors implement the laws of repeated-static loading (RSL) and convenient method of linear summation damages caused by LCF and RSL with different for the duration holds are used. Obtained non-linear equation makes possible to calculate the durability (lifetime) of material witch is correlated with hold duration. As the result of researches for the heat-resistant materials ZhS-6K and EI-437B the important conclusions and recommendation were obtained at least at qualitative level. Research results were experimentally validated for one case.

Key words: repeated-static loading, low-cycle fatigue, long-term strength, holds in cycle, damageability.

Симбирский Дмитрий Федорович – д-р техн. наук, проф., проф. каф. конструкции авиационных двигателей Национального аэрокосмического университета им. Н.Е. Жуковского «ХАИ», Харьков, Украина, e-mail: aedlab@gmail.com.

Брунак Андрей Александрович – аспирант кафедры конструкции авиационных двигателей Национального аэрокосмического университета им. Н.Е. Жуковского «ХАИ», Харьков, Украина, e-mail: aedlab@gmail.com.