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FORECASTS ACCURACY COMPARISONS FOR VAR,
AR AND VARMA MODELS

Although the scalar components methodology used to build VARMA models is rather difficult,
the VAR models are easier to be used in practice, the forecasts based on the first models have a high-
er degree of accuracy. This statement is demonstrated for the variables like the 3-month treasury
bill rate and the spread between the 10-year government bond yield and the 3-month treasury bill
rate, the data are from the U.S. economy. We use a better measure of accuracy than those used in
literature before, the generalized forecast error second moment, then adapted to measure the rel-
ative accuracy.
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Mixaena bpary

MOPIBHSIHHA TOYHOCTI ITPOTHO3IB
MO/JIEJIEN VAR, AR TA VARMA

Y cmammi nokaszamo, wo xoua Mmemodoaozia CKAAAPHUX KOMNOHeHMi8, sKaA
euKopucmogyemocs 04 modeaeii VARMA, € do6oai ckaadnoro, a modeai VAR € npocmiwumu oas
3aCMOCYy6aHHA HA NpaKkmuui, npocHo3u 3a nepwumu mouHiwmi, Hinc 3a dpyeumu. Jlane
CcMeepoXsceHHs NIOKPInAeHo mecmom 3 MaKumu 3MIHHUMU, AK 3-MICAMHUL KYPC KA3Ha4eiicbKux
eekceais, cnped minc 10-piunum npudymrom 3a obaicauiamu ypsdy ma 0aHumM Kypcom eexcenis.
s modearosanns suxopucmaro oani ugooo exonomixu CIIIA. Ilpedcmaeaeno euxkopucmanus Ho6oi
Mipu mounocmi, wio He Oyaa pamiute onucana 6 aimepamypi, — y3azaibHeHUil NPOZHO3 NOMUIKU
dpyzoeo nopsoky. /lana mipa mo4rocmi 3acmocoéana 045 OyiHI06aAHHS 6iIOHOCHOI MOYHOCTII.

Karwwuosi caosa: VARMA modeni; mounicms;, memooonoeis CKAAAPHUX KOMHOHEHMIs;
MAKCUManbHa npasoonodibHicms 3 NOGHOK iHGOpMayiero; KAHOHUMHA KOPeAsayis.
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Muxasaa Bpary

CPABHEHUS TOYHOCTHU ITPOTHO30B
MOJEJE VAR, AR 1 VARMA

B cmamoe noxazano, umo xoms memoooao2us CKaAApHbIX KOMNOHEHMOE, UCNOAb3YeMAs
0as modeaeti VARMA, dogoavro caoxcna, a modeau VAR npowe npumenenums na npaxmuke,
NPO2HO3bL C UCNOAb30GAHUEM NEPeblX moyunee emopvix. Jlannoe ymeepicoenue nooKpenieHo
mecmom ¢ MaxKumu nepemMeHHbIMU, KAK 3-MecAuHblil Kypc KasHauelickux eekceaeil, cnpeo
mexncoy 10-aemuum 0oxodom no obaucauuam npasumeavcmea u OAHHbLIM Kypcom eéekceaell.
Jlaa moodeaupoeanus ucnoavsosanst dannsvte skonomuxu CIIA. Ilpedocmasaeno ucnoavsosanue
HOB0Il Mepbl MOMHOCMU, He ONUCAHHOI paHee 6 aumepamype, — 0000UeHHbLE NPO2HO3 OWUOKU
eémopozo nopsoka. /lannas mepa movHOCMU NpUMEHeHA 0AA OWEHKU OMHOCUMEAbHO i
mounocmu.

Karoueevie caosa: VARMA moodeau; mounocms; memooonoeus CKAAAPHbIX KOMNOHEHMO8,;
Makcumanvhoe npagoonodobue ¢ noAHOU UHGOPMAayUell; KAHOHUHECKas KOPPeAaUUs.
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VARMA models in literature. Vector autoregressive moving average models
(VARMA) and the VAR ones are used in econometrics, particularly in time series
analysis, to reveal the cross-correlations between series, exceeding the isolated analy-
sis of the data series.

Amid the success of univariate ARMA models in forecasting, it was made the
passing to VARMA models for multivariate context. The purpose of their introduc-
tion is consistent with the Granger definition of causality and is related to the
improvement of forecast accuracy by using a model with interrelated variables. For
the first time these models were used by Quenouille (1957). Since then, they have
been the subject for research by Tiao and Box (1981), Tiao and Tsay (1983, 1989),
Tsay (1989), Wallis (1977), Zellner and Palm (1974). In all these cases, the number of
variables was small, no more than 3. Another problem was the inability to identify
VARMA representations. These problems were analyzed by Hannan (1970, 1976,
1979, 1981), Dunsmuir and Hannan (1976) and Akaike (1974). Hannan and Deistler
(1988) were the first to provide the theoretical presentation of VARMA models.
Lautkepohl (1991, 2002) and Reinsel (1993) analyze the forecasts based on these
models. ARIMA models, although widely used, fail to describe the dynamics of all
the relationships between selected variables.

VARMA models are the result of Wold decomposition theorem for multivariate
stationary series, as shown by G. Athanasopoulos and FE Vahid (2007). C. Kascha and
C. Trenkler (2011) state that there are very few studies on the performance evaluation
of forecasts based on VARMA or cointegrated VARMA models. Poskitt (2003),
Athanasopoulos and Vahid (2008) and C. Kascha and C. Trenkler (2011) evaluate the
accuracy of forecasts made using VARMA models and they obtain a good perform-
ance, exceeding the one of VAR models.

VARMA models have been used by many researchers as Quenouille (1957),
Hannan (1969), Tunnicliffe-Wilson (1973), Hillmer and Tiao (1979), Tiao and Box
(1981), Tiao and Tsay (1989), Tsay (1991), Poskitt (1992), Lutkepohl (1993),
Lutkepohl and Poskitt (1996), Reinsel (1997), Tiao (2001), G. Athanasopoulos and
F. Vahid (2004, 2005, 2006, 2007, 2008). Howeyver, finite order VAR models are pre-
ferred to VARMA, since in literature there is no question about their alternative use
and the identification of VAR is easier, a lot of software allows the development of
these models. Economic theory is not in accordance with the process modeling using
VAR, the moving average terms couldn't be excluded. Cooley and Dwyer (1998)
argue that macroeconomic time series modeling using VAR models is not consistent
with the economic theory. But the difficulty with VARMA methodology imposed the
selection of VAR models, whose results are quite good. Likelihood function is based
on the normality assumption and it can be recursively determined, the first p obser-
vations being set, and the next being zero. Starting from the state space form of the
model this likelihood function can be exactly calculated. The determination of
VARMA(p, q) model orders is quite difficult, given the fact that the parameters must
follow certain restrictions. Kascha and Mertens (2009) carry out a comparative analy-
sis of the identification of structural form for VAR and VARMA models and for rep-
resentation in the state space form.

Feunou (2009) uses a VARMA model to represent the yield curve, eliminating
the restrictions on cointegration. Dufour and Pelletier (2005) propose a modified
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information criterion to determine VARMA orders, this being only a generalization
of the Hannan and Rissanen (1982) criterion. Mainassara (2010) brings a change in
AIC criterion used in VARMA models selection by Tsay and Hurvich (1989), result-
ing the AICc criterion, which is an almost unbiased estimator of the Kullback-Leibler
divergence. If d-data sets are analyzed, the number of parameters to be estimated is:
Choosing a too small VARMA (p, q) order implies inconsistent estimators and a too
large order brings a decrease in forecast accuracy, as shown by Mainassara (2010).

Procedures for specifying and estimating cointegrated VARMA models have
been developed by Yap and Reinsel (1995), Lutkepohl and Claessen (1997), Poskitt
(2003, 2006, 2009). All these procedures are based on the "echelon form". This form
is a set of restrictions for parameters to ensure the rest of parameters are obtained
using likelihood function. Kascha C. and C. Trenkler (2011) extend the representa-
tions of Dufour and Pelletier (2008) that were valid for the non-stationary series.

Kascha C. and C. Trenkler (2011) start from the last significant results related to
the VARMA models, proposing a strategy for specification and estimation for cointe-
grated series. The authors made predictions based on these models for the U.S. inter-
est rate.

Athanasopoulos G. and Vahid E (2007) showed that the forecasts based on
VARMA models are better than the ones based on VAR.

In literature there are several methods to identify the VARMA. Athanasopoulos
G. and Vahid F (2008a) identified two methodologies that can be applied to obtain a
unique identification of VARMA. The authors made comparisons of the forecasts
made on VARMA models. The first methodology is an extension of Tiao's and Tsay's
one (1989). The second methodology, the echelon form one, involves the estimation
of the Kronecker indices, calculated as the maximum rank of each row from each
equation of the model, and the specification the canonical echelon form. Kronecker
indices are estimated using the least squares method applied to regressions. The inno-
vation estimates with lag are derived from the first stage of a VAR presented by
Hannan and Rissanen (1982). Kronecker indices are determined at the second stage
using a model selection criterion, as shown by Hannan and Diestler (1988) and
Lutkepohl and Poskitt (1996). This methodology is very simple, being used by Akaike
(1974, 1976), Kailath (1980) and Kavalieris Hannan (1984), Solo (1986), Hannan
and Deistler (1988), Tsay (1991), LAutkepohl (1993), Nsiri and Roy (1992.1996),
Poskitt (1992), LAutkepohl and Poskitt (1996). Using Monte Carlo simulations,
Athanasopoulos and Vahid (2006) evaluated the ability of two methodologies to iden-
tify VARMA models. Based on the real data, the authors compared the performance
of VARMA models that used these two methodologies.

Tiao and Say (1989) proposed the first method, fairly criticized, later it was
improved by G. Athanasopoulos and F. Vahid (2006). Their methodology has 3
stages:

- Identification of scalar components of the model (SCM) by applying canoni-
cal correlation tests between different sets of variables;

- Identification of the structural form of a model using the same tests and some
certain logical deductions;

- Estimation of a model using the method of full information maximum likeli-
hood (FIML).
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Tiao's and Say's (1989) methodology estimates the parameters in two stages, but at
the first stage there is a deviation of standard errors results, this error being corrected
later in the three-stages version proposed of G. Athanasopoulos and F. Vahid (2006).

In 1989, Tiao and Tsay presented their SCM methodology to the Royal Society
of Statistics. The critiques related to their methodology were formulated by Chatfield,
Hannan, Reinsel and Tunnicliffe-Wilson, but excluding Tsay's intervention in 1991,
the methodology was developed later only by two authors. G. Athanasopoulos and
Vahid E are those who extended the methodology, the results of its application being
periodically published, especially in the recent 10 years.

Tiao's and Say's methodology critiques are related to determination of transfor-
mation matrix can be summarized as follows:

- the use of transformation matrix does not lead to the most efficient estimators
for parameters;

- standard errors can not be calculated for the estimated parameters in matrix A;

- the total number of the estimated parameters in A should be included info the
model parameters to reduce the number of degrees of freedom;

- identification of VARMA (p, q) is based on the transformed variables and not
on the original ones.

All these problems are solved by G. Athanasopoulos and E Vahid (2008b), which
provide a formula for determining the number of redundant parameters of matrix A. They
describe the procedure by which certain parameters are normalized to 1, but they are dif-
ferent from those that should be set to zero. The authors give up to the estimated canon-
ical covariates by choosing an estimate of full information maximum likelihood parame-
ters. However, they keep the way of determining the order of the K scalar components.

The VARMA modeling methodology based on scalar components. In order to
identify the VARMA model we examined the presence of simple structures in the
process. Scalar component methodology of Tiao and Say (1989) considers a K-
dimensional VARMA (p,q) model (xt = @xe-1 + ... + @pxe-p + 1t — OMt-1 — ... — Oglt-q)
a non-zero linear combination: z: = a’x: follows a SCM (p,q) process if ¢ satisfies the
following properties:

T
ad #0 ,0<p,<
P Py=p

oc’dJ/:OT, I=p1+1,...,.p
p T
a®q1 #0" ,0=g1=q

T
a@ql =0 ,I:q1 +1,...,q

Scalar random variable admits an ARMA representation with orders that vary from
pl to ql, depending on lags from 1 to pl and its innovations depend on lags from 1 to
ql. The identification starts with the SCM (0,0), which is actually a white noise. The
basic idea is to find out linearly independent vectors K that achieve a rotation operation
of VARMA (p,q) process in a new process with a dynamic structure, but with fewer
parameters. The linearly independent vectors form a matrix A = (o, ..., ok)’. Then,
Zt = Axt.
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The VARMA process with transformed variables keeps all the rows of zero
restrictions from AR component, the parameters matrix from MA having the form:

2, =@z, +..+D,z,_ +&,-0,_ —..—O€,_, (1)
where @, = A® A e, =An,,0, =A0,A™".

If we identify two scalar components:
z,,=S8CM(p,,q,)and z,, =SCM(p,.q,),where p, >p,,q, >q,,

the lags of Zs:from the right part of the dynamic equation for Z-+ can be expressed in
terms of variables from right side of Zr:. Lags orders of Zs,:can take values between 1
and the minimum of {pr — ps, g-— qs} The parameters on the right side of the dynamic
equation for Z-tcan be determined only if the maximum lag order is set to zero.

Using canonical correlation tests, the form of models with scalar components
embedded is identified. The SCM (0,0) combination is a linear one, the canonical
correlations between past and present being identified by a simple generalization
made by Hotelling (1935) for time series. The squares of these canonical correlations
will be noted with A, < 4, <...< A, . The likelihood ratio test is applied when the null
hypothesis is that there are at least s scalar components and the alternative one refers
to the existence of less than s unpredictable components. The test statistic is:

C(8)=~(n—M Y IN(1=1) ~ X2(nyss)

Consistent estimates of scalar co,l(ﬁ1ponents are given by the canonical covari-
ances corresponding to insignificant canonical correlations. Generalized method of
moments based on the test with the same hypothesis as the above one has the statis-
tics, as shown in Anderson and Vahid (1998):

S ~
(n— h)z/lk
k=1
Using the squared canonical correlations between x,, =(x;,...,x;_,)" and
Xpi1=(X] 450 X1 1) sh=p and a similar test a SCM (p, 0) is determined.

SCM (p, j) are linear combinations of xp,:, for which linear predictions can not
be made in history before f-j moment. By the structure of the weighted matrix
obtained applying the generalized method of moments is determined a linear combi-
nation, which is a moving average of order j. In this context a test of supraidentifying
the restrictions is applied. Tiao and Say (1989) proposed a statistics:

e A
C(s)=—(n-h —/)E'nﬁ —d—k) ~ Xetih-pikss)

k
dk is a correction factor that arises because canonical variations may be moving
J
average processes of order j. Thus: d, =1+ 22 P, (r x ot )Py (9,x ni-1-;) Pv () being the
v=1
autocorrelation of order v corresponding to the argument and the terms in brackets
are the canonical variances of the k canonical correlation. Higher value orders are

identified below by testing the orders. Tiao and Say (1989) pointed out the results of
the tests in a table that represents the rules for identifying the orders of SCMs. These
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authors obtained a consistent estimator of the transformation matrix A, starting from
the estimated canonical coefficients. They identify the appropriate null eigen vectors
in the applying statistical tests.

Athanasopoulos G. and Vahid F. (2008a) present the following rules to ensure
unique identification of the system:

- The model structure does not change if each row of the matrix A is multiplied
by a constant. This allows normalization of the parameters on each row by one.
Using tests of predictability for subsets of variables, we verify that a parameter set to
zero is not normalized by one.

- Any linear combination of SCM (pr, g7) and SCM (pz, g2) isa SCM (max (p1, p2,
(g1, g2)). When there are only two scalar components in the SCM (p1, 1), random
multiples could be included without changing the structure. Because in this case the
line of matrix A corresponding to SCM (p1, qr) is not identified, the parameter in
column k corresponding to the line from A is normalized by 1. The parameter from
line k that corresponds to SCM (pz, q2) is restricted to zero.

- Ifand a submatrix identity is formed and the previous rule is applied twice. If
there is only one SCM with an AR/MA of minimal, the corresponded row from A is
uniquely identified.

In the original methodology an estimator for A ( A ) was obtained and z: = A xe
was determined, then @,...® " and ©',...0°g which have many null restrictions.
The improved methodology of G. Athanasopoulos and F Vahid (2008a) rewrited the
original system variables and by identification of A restrictions we obtain estimates
using as method the full information maximum likelihood.

Setting at zero the MA coefficients is equivalent to replacing the MA process
variables on the right side of the equation (zt-1,...,z:-p) with variables xt-1,...,Xt-p, main-
taining the system structure. Taking into account the replacement of zt-1,...,Zt-p With
A Xt1,...,A xt-pand the obtain of the system:

- . . 2
Z, =Y, Z Y2, -0 . -0, @

G. Athanasopoulos and E Vahid (2008b) showed that have the same zero restric-
tions as @'1,...@"p. This lemma leads to:

- : . 3
AXy =W X+ WX, +6-08 —...—0, (&)

in which the parameters satisfy the same restrictions as matrix parameters from the
right part of the equation (1). Since not all matrix parameters are free, the system is
still unidentified. This situation restricts the matrix A to have a uniquely determined
system.

The matrix A is identified if and only if the single matrix H so that

HAX, =Hy X,_ +...+ Hy x,_, +He, —HOg,_, —...— HO ¢,_ has the same restrictions
as (3) and it is the unit matrix of order K.

It is also assumed that the k row from the system is SCM(p+, gr). Null restric-
tions on the right side of the system show that the row k of matrix H may differ from
that of an identity matrix, if there are other SCM (pr, g7) models. The row of rank k
from matrix is transformed into a row of identity matrix by normalization to 1 of an
item in this row.
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A canonical representation SCM VARMA has the following characteristics:

i. The orders for SCM are as small as possible;

ii. In order to obtain a unique identification, all the redundant parameters from
transformed matrix A are restricted;

iii. Zero restrictions used to determine the number of redundant parameters are
set for the corresponding coefficients of MA process.

An empirical example of VARMA modeling methodology. The procedure applied
by G. Athanasopoulos and F. Vahid (2007) to ensure that the element that must be set
to zero is not normalized to one starts with a SCM of minimum order. One of the
variables is excluded and the test of predictability is applied for the rest of the vari-
ables. Ifthe test is rejected, then the eliminated variable coefficient is set to 1 and the
rest of the coefficients are zero. If the test is accepted (an SCM is formed with the
rest of variables) the coefficient corresponding to the eliminated variable is set to zero
and the test continues after the elimination of another variable. Tests applied in this
case are GMM tests, which are tests of generalized method of moments proposed by
Hansen (1982).

1. The identification of scalar components

Tiao's and Say's (1989) methodology for this stage consists of two steps, to which
Athanasopoulos G. and E. Vahid (2008b) added a rule of elimination.

The two steps are:

a. Determination of the overall order

All null canonical correlations between Xxm,tcand xm,t-1-j are determined, begin-
ning with m = 0 and j = 0. A table with two parts is built.

Determine all canonical correlations between the null and since m=0andj=0. It
is a table composed of two parts. We start from the top left corner and look the first
occurrence of zero eigen values s + K, where s is the number of null eigen values in
position (p-1, g-1) of the table. It is considered that (p, q) is the general order of the
system. In case we identify several orders of this form, we will select only one using
an information criterion.

Table 1. Criterion table

j
m 0 1 2 3 4
0 140.11 90 347 2.57 2.55
1 3.2 09 0.98 0.94 0.94
2 1.23 1.05 1.23 0.9 1.03
3 1.05 1.08 0.92 1.05 1
4 0.89 0.92 1.93 0.9 0.98
Table 2. Root table
j
m 0 1 2 3 4
0 1 1 1 1 1
1 1 4 4 4 4
2 1 5 9 9 9
3 3 9 11 15 16
4 4 10 17 19 24
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For 4 macroeconomic variables (inflation rate (nt), the GDP growth rate (g1,
the 3-month treasury bill rate (rt), the spread between the 10 year government bond
yield and the 3-month treasury bill rate (st)) we form the series of quarterly data from
the U.S. economy. These variables were used in recent researches in models with
observable factors or in the new Keynesian DSGE ones. Federal Reserve Economics
Database (FRED) was used to create the data series. Quarterly interest rate data were
obtained from monthly data as average. Inflation rate used in VARMA model is dif-
ferent from the one published by FRED, being calculated by multiplying by 400 the
difference between the logarithm of consumer price index in the last month of the cur-
rent quarter and the last month of the previous one. Levin (1999) recommends the first
order differentiation of interest rate in monetary policy models. His indication is argued
by the fact that it can develop rules for monetary policy less affected by model uncer-
tainty. One of the reasons for which variables as interest rate in first difference are used
in this study and the GDP growth rate is related to the need of applying canonical cor-
relation tests with a chi-square asymptotic distribution for stationary series.

We use quarterly data for the period first quarter 1955 — fourth quarter 2000 to
build VAR and VARMA models and make predictions based on these models for the
horizon first quarter 2001 — second quarter 2011. The identified models are: VARMA
(2,1), VAR with 3 lags when the selection criteria is AIC and VAR model with two lags
when the selection criteria is BIC, univariate AR (AR(1) for GDP growth rate, AR(3)
for inflation rate and AR(2) for other variables.

The VARMA model is:

9: 0,72 013 -005 041 055 9t

1 0 0 O 05 -038 089 03 024
A T = + A T +

-082 -003 015 1/ ¢ 023 -004 004 1 -0,11 s,

A, -064 00 0 O AT
0o 0 0 0 iz 0 0 0 o0\ [Cu Cu
0 O 0 0 ., 0 O 0 0\ /e, [ €
~002-007-015005 | | g _ 062-057-123 0/ \ o e,
0 0 0 O A, 0 0 0 O Cur e,

b. The determination of scalar components orders

We test the null canonical correlations between Xm,+ and Xm+(q-jt-1-, Where m = 0
,....,pandj=0,..., q. The SCM (m, j) includes all the scalar components of smaller
order, in (m, j) position there are s scalar components will be and scaling compo-
nents, where s = min {m-p1 +1,;-1} for each SCM (p1, q1).

2. The place of restrictions of identification

Identification rules are applied to determine the structure of the matrix A.

3. The estimation of the system of unique identified parameters

The parameters estimation method is the full information maximum likelihood
presented by Durbin (1963). This method provides estimates for both parameters, as
well as standard errors of parameters, including the free ones.
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The trace and the determinant of the mean square errors matrix are classical
measures of forecast accuracy, used by G. Athanasopoulos and E Vahid (2007). We
use the generalized forecast error second moment as measure of accuracy. This is cal-
culated according to Clements and Hendry (1993) as a determinant of the expected
value of the vector forecast errors for future times on the horizon of interest. If we
study a number until h quarters, this indicator is calculated as:

et+1 et+1

GFESM = |E| €t+2 |.|| Et+2

et+h et+h

etn— N-dimensional forecast error of the model of n variables on the forecast-
ing horizon h

It is considered that GFESM is a better measure of accuracy because it is invari-
ant to elementary operations with variables, unlike the trace of MSFE, and also it is
a measure invariant to elementary operations for the same variables on different fore-
casting horizons, unlike the trace or the determinant of MSFE.

We propose as a measure to compare the accuracy of forecasts basing on these
models a new indicator: the ratio GFESM relative to the VARMA model.

We calculate the ratio GFESM relative to the VARMA model one quarter ahead for
the two models (h = 7). For multivariate models we also calculate GFESM separately.

Table 3. Ratio of the GFESM relative to the VARMA model
for one step ahead forecasts

Model GDP growth rate Inflation S, Ar | GFESM |
VAR (AIC) 0.93 1.01 1.22 ** 1.59 * 1.69
VAR (BIC) 091 1.06 1.24 * 2.06 * 211
AR 0.82 1.03 1.09 122 * -
Naive model 0.81 1.35 6.82 * 145 * -

* For the significance level of 5% the ratio differs significantly from 1.
** For the significance level of 10% the ratio differs significantly from 1.

Analyzing Table 3, the VARMA model provides forecasts with a higher degree of
accuracy than VAR models for variables St and Ar:. Knowing that these variables are
not affected by structural shocks it is likely that forecasts based on VARMA models
are better than those based on VAR models.

Conclusions. Scalar components methodology used in building VARMA models
is quite difficult to apply on practice, but for small time horizons, the forecasts based
on these models are better than others for the variables unaffected by structural
shocks. This conclusion has been also reached by G. Athanasopoulos and F. Vahid,
but indicators used to measure the accuracy were the classical ones: the trace and the
determinant of MSFE. In this study, the accuracy is evaluated using as indicator the
generalized forecast error second moment. We introduce a new measure for evaluat-
ing the relative accuracy in order to make comparisons between forecasts: the ratio of
the GFESMs relative to the VARMA model.
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