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IS IT FEASIBLE FOR CHINESE THERMAL POWER PLANTS
TO IMPROVE CO, EMISSION? TOTAL-FACTOR PRODUCTIVITY

AND CARBON INTENSITY INDICATOR APPROACH

This paper proposes non-radial directional distance functions for a low-carbon productivity
analysis in the field of fossil fuel electricity generation. It is used to measure the low-carbon pro-
ductivity performance of thermal electric power plants. Based on the approach, we develop a total-
Jfactor carbon intensity (TCI) indicator in the total-factor productivity viewpoint and provide an
empirical analysis of thermal power plants in China belonging to various power companies. The
results show significant differences in total-factor carbon intensity across power companies. TCI
indicator is lower for state-owned power companies than for private ones. This suggests that
Chinese government should consider private incentives and deregulation for its state-owned enter-
prises.

Keywords: thermal power plants, non-radial directional distance function, total-factor carbon
intensity indicator, China.

Hinr VI_IaHr, HMonr-Pok Lot
YU CKOPOTATHb KUTAUCHKI TEILIJIOBI EJIEKTPOCTAHHIT
BUKHWIU CO,? CYKYITHA ®AKTOPHA ITPOAYKTHUBHICTb

I HIAXTA O ITOKASHUKIB ITMTOMUX BUKN/IB

Y cmammi 3anpononosano wepadiaavHy cnpsamosany QyHkuito eidcmamni 0aa awnaaizy
eupoOHUUMEea eneKmpoeHepeii Ha HU3bKOGy24euesoMy eukonnomy naaugi. Ii mocna
GUKOPUCMOBY8AMU 04a GUMIDIOBAHHA NOKA3HUKIE HU3bKOGY21eUe6020 GUPOOHUUMEA Mena06ux
eaexkmpocmanuyii. Ha ocnosi danozo nioxody pospobaeno cykynuuii ghaxmophuii inouxamop
numomux eukudie (TCI) 3 mouxu 30py cykynnoi ¢paxmopmoi npodyxmuenocmi, wio dae
Moxcaugicms eMnipu4HO20 anaaizy menaosux eaekmpocmanyiii 6 Kumai, axi naiexcams piznum
eHepeemuvHuUM Komnaniam. Ompumani pe3yabmamu noxazaau 3Ha4Hi iOMiHHOCMI 8 CYKYNHUX
daxmopnux numomux euxuoax é enepeemuyunux komnaniax. Iloxasnux TCI eusasueca nuxcuum
0451 OepycasHux enepeemuyHUX Komnawiil, Hixc 0aa npueamnux. Ilepedbauacmoca, wo
Kumaiicokuil ypsi0 NOGUHEH PO32ASHYMU NPUGAMHI 3ACO0U 3A0XO04EeHHA i Oepe2yilo8aHHA 04
deporcasrux nionpuemcms.

Karwwuosi caosa: mennosi enexkmpocmanyii, nepadiasbha cnpamoeana @yHKuis eidcmati,
CYKYNHUI (paKmopHUili NOKA3HUK numomux eukudie, Kumai.
Taba. 5. Dopm. 7. Jdim. 22.

I‘.IJPIHI‘ Ilanr, Vonr-Poxk Ioii
COKPATAT JIN KNTAUCKHUE TEIIJIOBBIE DJIEKTPOCTAHIINN
BBIBPOCBHI CO,? COBOKYITHAA ®AKTOPHASA

IMPOU3BOJUTEIBHOCTD 1 IIOAXOJ
K ITOKA3ATEJIAM YJEJIBbHBIX BBIBPOCOB

B cmambve npedaoncena HepaduaibHas HANPAGACHHAS PYHKUUA PACCMOAHUA 0451 AHAAUZA
npou3e00cmea >AeKMpoIHepP2UL HA HU3KOy2aepooucmom uckonaemom monauee. Ee moxcro
UCnoav306anmsv 041 U3MEPeHUs NOKazameneil HU3KOY2AepOOUCMO20 NPOU3B00CMea Meni06ol
aaexmposnepeuu. Ha ocnose Oannozo nodxoda paspaGoman coGOKYRHbLE (haxmopHoLil
unduxamop yodeavuvix evtopocoé (TCI) ¢ mouku 3penus co6oKynHoi haxmopnoi
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npouseodumensHocmu, 4mo oaem G603MONCHOCHMb obecnevueamsv >MRUPUHECKUN QHAAU3
menaoeovlx 31exkmpocmanuuii ¢ Kumae, npunadasexcawux pazaudHoiM 3Hepeemu1ecKum
xomnanusam. Iloayuennvie pesyibmamol NOKA3aAu 3HAYUMEAbHBIE PA3AUMUSL 6 COBOKYNHBIX
axmopuvix yoeavnoix eévibpocax 6 3mepzemuueckux xomnanusx. Iloxazameav TCI oxazaacs
Hudce 0451 20CY0apCMGEHHbIX IHepeemuHecKux Komnauui, wem 04a wacmuoix. Ilpedaoincerno
KUMaQiicKomy npasumeascmaey Ucnoab3068ans 4acnimnbvle Cpedcmaa noouwpenus u 0epezyiupoeanus
045 20CYO0apCcmEeHHbIX Npeonpusmuii.

Karouesvie caosa: meniosvie 21eKmMpocmManyuu, Hepadudibhas HANPAGAeHHAs QyHKUuUs
DPACCMOSAHUSA, COBOKYNHDLI (DAKMOPHbBLI NOKA3aMenb YOeabHbIX 8bi0pocos, Kumail.

I. Introduction.
In China as the biggest CO, emitter in the world, the power sector accounted for

about 48% of CO, emissions in 2010 (Liu, Wang, 2011) and thus played an important
role in reducing China's total CO, emissions. It is crucial for fossil fuel power plants
in China to improve their energy efficiency to reduce CO, emissions. By taking
proactive strategies to improve energy efficiency, power generation companies are
able to not only reduce CO, regulation risks, but also improve their economic com-
petitiveness through reductions in abatement costs. However, it is not easy to handle
all the positive as well as negative input and output factors simultaneously. In order to
include all these diverse issues together and to propose more field-oriented implica-
tions, this paper aims to develop a total-factor carbon intensity indicator for bench-
marking the CO, emission performance of Chinese thermal power plants.

Various indicators have been developed and applied to monitor CO, emissions.
For instance, Mielnik and Goldemberg (1999) propose a "carbonization index" (the
level of CO, emissions per unit of energy consumption) to assess the evolution pat-
terns of developing countries with regard to climate changes. Ang (1999) argues that
energy intensity (energy consumption per unit of GDP) is as useful as the carboniza-
tion index in the study of climate changes. Sun (2005) highlights the usefulness of
CO, emission intensity in measuring de-carbonization and assessing energy policies
at the national level. More specifically, several studies were conducted to estimate
potential emission reduction in electricity generation through benchmarking analysis
(Maruyama, Eckelman, 2009). These studies often assumed that the fossil-fuel elec-
tricity generation efficiency by fuel type could reach a certain percentile level of all
the sampling countries/regions. Unfortunately, the single indicator approach and
benchmarking studies focus on the single-factor CO, emissions performance.
However, electricity generation is a multi-factor production process that utilizes both
energy and non-energy inputs including labor force and capital to produce desirable
and undesirable outputs. It is therefore meaningful to analyze energy and CO, per-
formance of electricity generation within the total-factor production framework,
which could provide valuable information regarding how emission reduction poten-
tials may be achieved.

Many studies have utilized production efficiency to analyze energy and environ-
mental performance (Zhou et al., 2008). Even in the electric power industry, a num-
ber of studies have employed the data envelopment analysis (DEA) technique to ana-
lyze the efficiency of fossil fuel electricity generation (Yang, Pollitt, 2010; Sozen et
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al., 2010; Jaraite, Maria, 2012; Sueyoshi, Goto, 2011; Zhou et al., 2012). However,
few have focused on the use of the directional distance function (DDF) for analyzing
the efficiency of the electric power industry. In comparison to traditional DEA mod-
els, the DDF measures efficiency by increasing desirable outputs (electricity) and
reducing undesirable ones (CO, emissions) simultaneously.

The conventional DDF reduces undesirable outputs (inputs) and increases
desirable outputs at the same rate and thus it may be regarded as a radial approach
with several limitations. One limitation is that a radial measure may overestimate effi-
ciency when there are some slacks (Fukuyama, Weber, 2009). Several studies have
extended the DDF to the non-radial DDF (NDDF) by incorporating slack into effi-
ciency measurement (Fukuyama, Weber, 2009; Fare, Grosskopf, 2010; Barros et al.,
2012). Zhou et al. (2012) define an NDDF with desirable mathematical properties by
taking an axiomatic approach to efficiency measurement.

This paper proposes a new NDDF named energy-carbon non-radial DDF
(ECNDDF) to measure the CO, emissions performance of fossil fuel power plants in
China. This paper employs the plant-level data for China, whereas Zhou et al. (2012)
use the country-level data only. To the authors' knowledge, this paper is the first study
to empirically measure carbon intensity on the fossil fuel power plant level in China,
and thus it will bring more field-oriented implications.

The rest of this paper is organized as follows: Section 2 describes the methodolo-
gy. Section 3 empirically estimates the total-factor carbon intensity indicator of fossil
fuel power plants in China and presents the results, and Section 4 concludes this study.

2. Methodology.

2.1. Environmental production technology. Suppose that there are N thermal
power plants and that each plant uses capital (K), labor (L), and fossil fuel (F) as
inputs to generate electricity (E), the desirable output, and CO, emissions (C), the
undesirable out. The multi-output production technology can be described as fol-
lows:

T ={(K,L,F,E,C):(K,L,F) can produce (E,C)}, (1)
where T is often assumed to satisfy the standard axioms of production theory (Fare,
Grosskopf, 2005). That is, inactivity is always possible, and finite amounts of inputs
can only produce finite amounts of outputs. In addition, inputs and desirable output
are often assumed to be strongly or freely disposable. For a reasonable model of the
joint-production technology, as described in Fare et al. (1989), the weak-disposabili-
ty and null-jointness assumptions should be imposed on T. Technically, these two
assumptions can be expressed as follows:

()If (K,L,F,E,C)OT and 0<0<1, then (K,L,F,0E,0C)0T,

) f (K,L,F,E,C)OT and C =0, then E =0.
The weak-disposability assumption indicates that reducing CO, emissions is not

free but costly in terms of a proportionate reduction in electricity generation, and the
null-jointness assumption implies that CO, emissions are unavoidable in fossil fuel

electricity generation and that the only way to remove all CO, emissions is to stop
operating electric power plants.
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Once the environmental production technology T is specified, the nonparamet-
ric DEA method can be used to specify the environmental production technology.
Based on Zhou et al. (2012), the environmental production technology T for N power
plants exhibiting constant returns to scale can be expressed as follows:

N N 0
K,LF.EC):S z,K, <K,y z,L, <L,
g 2 2 A
T =0, W " 0 ?)
aZann <F,Nz,E,2E)Y z,C,=C,z,20,n =1,2,--~,N§
=1 n= n=

Based on this nonparametric piecewise linear production frontier for the envi-
ronmental production technology, we can apply the NDDF.

2.2. Non-radial directional distance function. The DDF is a relatively new
methodology for measuring performance. Chung et al. (1997) is the first to use the
DDF to examine environmental efficiency. Here, the traditional DDF is defined
such that it seeks to maximize desirable outputs while reducing undesirable ones
simultaneously:

D(K,L,F,E,C;g) = sup{B: (K,L,F,E,C)+g [B))IT}. (3)

Because the radial DDF in equation (3) does not take slack into account, it has
the potential to reduce inefficiencies and thus may overestimate the efficiency score.
Another limitation of the radial DDF derives from the fact that the radial DDF can-
not distinguish environmental performance with operational ones because radial
DDF can only give the same rate of inefficiency (Sueyoshi, Goto, 2011). Therefore,
it is difficult to obtain carbon performance by using the radial DDFE Non-radial effi-
ciency measures are often advocated to overcome this limitation because of their
advantages (Zhou et al., 2007; Chang, Hu, 2010; Choi et al., 2012). Recently, Zhou
et al. (2012) provide a formal definition of the non-radial DDF with undesirable out-
puts. Following Zhou et al. (2012), we define the non-radial DDF as follows:

D(K,L,F,E,C;g) = supiw’B: (K,L,F,E,C) +g [iag(B))IT}, “%)
The symbol diag refers to diagonal matrices, where W'=(w,, w,, Wg, Wg, wc)’

denotes the normalized weight vector relevant to the numbers of inputs and outputs;
9=(-9x-9:,-9 9 -9c) is the  explicit directional vector; and
B =(Bx,B,.BrBe.Bc)" =0 denotes a vector of scaling factors representing individual
inefficiency measures for each input/output.

The NDDF value, denoted as D(K,L,F,E,C;g), can be computed by solving the
following DEA-type model:

D(K,L,F,E,C;g) =maxw,B, +w B, +W B, +w B, +wp, ©®)

N
s.t.y z,K, <K-B«g
,72:1 KIK
N
Zann <L-B,9,
n=1

If D{K,L,F,E,C;g)=0, then the power plant to be evaluated is located on the
production frontier by g direction.
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We can then develop an indicator to measure the unified performance in the
context of electricity generation. Because there are 3 inputs, one desirable output,
and one undesirable output, we set the weight vector as (1/9, 1/9, 1/9, 1/3, 1/3). For
measuring the environmental performance of fossil fuel power plants it is better to fix
the non-energy inputs. By setting the directional vector as g =(0,0,-95 s -gc) and
the weight vector as (0, 0, 1/2, 1/4, 1/4), we remove the diluting effects of capital and
labor from the objective function and constraints. We define this non-radial distance
function as the energy-carbon non-radial DDF (ECNDDF). The ECNDDF value,
denoted as DA K,L,F,E,C;g), can be calculated by solving the following DEA model:

bE(K,L,F,E,C;g) :maXWFBF +WEBE +WCBC (6)
N
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Once equation (6) is solved, we can obtain the optimal solutions B, g, and
B¢, and following Zhou et al. (2012) we define the total-factor carbon intensity
(TCI) indicator as the ratio of potential target carbon intensity to actual carbon inten-
sity (C/E), which can be expressed by
(C-B:C)/(E+BLE) _1-B; @

C/E 1+B,

Clearly, TCI indicator lies between zero and unity. The higher the TCI is, the
better is the carbon intensity performance. If the TCI is equal to unity, then the obser-
vation reflects the best efficiency located on the electricity generation technology
frontier.

TCl =
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3. Empirical Analysis and the Results.

3.1. Data. Based on the methodology described above, we estimate the carbon
intensity indicator for fossil fuel power plants in China. The sample consists of 260
thermal power plants operating as of 2010. Table 1 provides detailed information on
these plants. About half belong to 5 main state-owned companies referred to as "five
big groups": DATANG, GUODIAN, HUANENG, HUADIAN, and POWER
INVESTMENT. Local companies also account for a large percentage of power plants
(38.8%). In addition to these "five big groups" and local companies, CR power,
GUOHUA, and SDIC are also large private power companies in China. As the 5
main state-owned companies are major suppliers of electricity, it is meaningful to
compare the unified efficiency of these companies with private and local companies.

The next subsection discusses the empirical results for the unified efficiency and envi-
ronmental performance of all these companies to assess differences in their performance.

Table 1. Classification of thermal power plants of companies

Code Electric Power Companies # of Plants %
1 China DATANG Corporation 34 13.1%
2 |China GUODIAN Corporation 37 14.2%
3 |China HUANENG Group 36 13.8%
4 |China HUADIAN Corporation 25 9.6%
5 |China POWER INVESTMENT Cor poration 7 2.7%
6  |China Resources Power Holdings Company 7 2.7%
7 |ISHENHUA GUOHUA power 10 3.8%
8 |SDIC Power Holdings 3 1.2%
9 |Local Power Companies 101 38.8%

The electricity output (E) of each power plant is measured by the gross amount of
electricity generated and the capital input (K) and the fossil fuel input (F) by the
installed generating capacity and fuel consumption, respectively, in standard coal
equivalent. The labor input (L) is measured by the number of employees for each
power plant. All data are obtained from the China Electric Power Yearbook 2011 (E
and K), the Chinese Industrial Enterprises Database (L), and the China Electric Power
Industry Statistical Analysis (F). According to Yang and Pollitt (2010), CO, emissions
of fossil fuel power plants can be estimated using the [PCC carbon emission factors by
fuel type. Table 2 shows the descriptive statistics for input and output variables. The
total installed capacity of the sample plants reached 404,274 MW, accounting for
about 57.2% of China's total installed fossil fuel capacity in 2010. Total CO, emissions
of the sample plants are 2,150.2 min. tons. The sample of our empirical test (260 fos-
sil fuel power plants) accounts for 25.8% of China's total CO, emissions.

Table 2. Descriptive statistics

Variable Unit Mean Standard Deviation Maximum Minimum
E 103 GWh 7.84 359 26.6 051
C 106 tons 8.27 373 27.99 526
K MW 1554.90 608.80 4800 1000
L Persons 654 264 2016 201
F 106 tons 24.39 10.89 84.59 153

3.2. Empirical results. Table 3 shows the results for total-factor carbon intensity
indicator. The TCI for all power plants ranges from 0.306 to 1 with the average of
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0.776. This implies that, on average, 260 power plants together can achieve a 22.4%
decrease in their carbon intensity if they all operate along the production technology
frontier. Local companies such as Baosteel and Waigaoqgiao2 (of Shanghai), Ligang
(Jiangsu) and Taizhou (Zhejiang) show the highest TCI indicator of 1. This result
reflects the fact that economically well developed provinces such as Shanghai and
Zhejiang are more likely to show greater efficiency even in terms of low carbon per-
formance (Choi et al., 2012).

Table 3. Total-factor carbon intensity indicator of companies and total plants

Company TCI. - -
" Mean Std. Dev Minimum Maximum

DATANG 0.778 0.068 0.522 0846
GUODIAN 0.784 0.073 0.461 0846
HUANENG 0.764 0.105 0.306 0847
HUADIAN 0.774 0.055 0.636 0842
POWER INVEST 0.689 0.157 0.455 0845
CR Power 0.814 0.073 0.649 0847
GUOHUA 0.785 0.121 0.446 0848
SDIC Power 0.811 0.008 0.803 0819
Local Power Com panies 0.785 0.075 0.457 100
Total Plants 0.776 0.082 0.306 100

At the company level, CR Power shows the highest average TCI indictor value of
0.814. POWER INVEST shows the lowest average TCI value of 0.689. These results
may be due to the fact that private companies such as CR Power in Hong Kong are
more motivated to improve management performance in terms of carbon intensity
than state-owned companies such as POWER INVEST. It might be interpreted as
private companies tend to incorporate the environmental strategy proactively into
their business management to avoid carbon risk and obtain the competitive advantage
of climate change.

SDIC Power shows the lowest standard deviations for TCI indicator, indicating
that its power plants operate under relatively similar technology conditions. On the
other hand, the power plants of POWER INVEST show the highest standard devia-
tions, indicating a relatively large technology gap between the individual power plants
of this company. State-owned companies such as POWER INVEST result in bad per-
formance in their innovation capacity and thus require much more incentive to
enable their individual power plant to promote and share technological innovations.

The average TCI value for "five big groups" is 0.772, whereas the average for
other companies is 0.818. This indicates that these 5 state-owned companies show
poor carbon performance than other companies. Therefore, state-owned companies
need to be innovated with more management incentives as well as R&D investment
for better low carbon-oriented governance.

As shown in Table 4, we employ the Kruskal-Wallis rank-sum test to determine
any significant differences in TCI indicator between different companies. The results
reject the null hypothesis at the 10% level, and it means rank differences in two
indices between the sample groups of companies.

Table 4. Kruskal-Wallis test of companies

Index Null Hypothesis (H,) KW Statistics p-value
TCI Mean(TCI, )=Mean(TCI,)=... Mean(TCII,) 14.38 0076
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The total-factor carbon intensity of power plants is examined in Table 5 by
provinces. Because the sample covers most regions in China, a provincial comparison
shall provide important implications. In terms of TCI, Tianjin shows the highest aver-
age value of 0.839. On the other hand, Jilin shows the lowest performance values (aver-
age = 0.684). Because Tianjin is more economically developed than Jilin, these results
indicate that the level of economic development may be positively related to econom-
ic and environmental efficiency of power plants. Economic development enhances
infrastructure and puts greater pressure on environmental issues, and therefore power
plants in these provinces should make more effort to meet these conditions.

Table 5. TCI of power plants by province

Provinces # of Plants TCI
Anhui 13 0.831
Fujian 7 0.706
Gansu 3 0.725

Guangdong 20 0.789

Guangxi 4 0.832

Guizhou 8 0.775
Hainan 1 0.800
Hebei 14 0.817
Henan 17 0.774

Heil ongjiang 5 0.706
Hubei 9 0.738
Hunan 8 0.740
Jilin 5 0.684

Jiangsu 26 0.815
Jiangxi 6 0.757

Liaoning 9 0.774

Inner Mongolia 16 0.742

Ningxia 4 0.798

Shandong 18 0.807
Shanxi 18 0.813
Shaanxi 10 0.770

Shanghai 10 0.734
Sichuan 3 0.750
Tianjin 5 0.839

Xinjiang 1 0.754
Yunan 5 0.767

Zhejiang 14 0.752

Chongging 1 0.728

4. Conclusion.

Many previous studies used DEA to measure the environmental efficiency of
fossil fuel power plants, but few have employed the DDF for this. This paper devel-
ops energy-carbon non-radial DDFs to measure the low carbon performance of fos-
sil fuel electricity generation. Based on the ECNDDF, we compute the total-factor
carbon intensity indicator from the viewpoint of total-factor productivity of fossil fuel
electric power plants.

The empirical results show significant differences in total-factor carbon intensi-
ty indicators across power companies as well as provinces. The power plants of state-
owned companies show poorer carbon performance than other companies, which
suggests that privately motivated innovation plays a more important role in enhanc-
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ing overall as well as environment-friendly performance. Chinese government should
emphasize more on incentives of private companies indirectly and deregulation for
state-owned companies directly for better governance of innovation in power sector.
This study has some limitations in that the empirical analysis is based only on the cross-
sectional data for 2010. Although the efficiency of electricity generation is not likely to
change in the short term, the empirical implications can be enhanced by considering time
series data. Given data availability, future research should include a longer period of time to
better assess the CO, emission performance of China's fossil fuel electricity generation.
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