462 HOBUHU CBITOBOI HAYKN

Maciej Panczyk'
EFFECTIVE USE OF MODERN HARDWARE ON THE EXAMPLE
OF SELECTED NUMERICAL LIBRARIES IMPLEMENTATION
IN BOUNDARY ELEMENT METHOD

Modern multicore CPU processors, frequently supported by many-core GPU processors, pro-
vide supercomputer performance for under $300. Unfortunately, it requires advanced program-
ming methods related to OpenMP, MPI, CUDA or OpenCL standards. Instead, many engineer-
ing problems can be resolved much faster using such a hardware, due to simple numerical libraries
implementations. The paper presents the effects of the use of libraries like BLAS or LAPACK and
their recent developments for multithread programming.

Keywords: boundary element method, numerical libraries, CUDA, OpenCL.

Maueii ITanbunk
E®EKTUBHE BUKOPUCTAHHS CYYACHOI KOMIT'IOTEPHOT1

TEXHIKHW HA ITPUKIIAZI 3ACTOCYBAHHS BIBJIIOTEK ITPOT'PAM
YUCEJIbHOI'O AHAJII3Y 3A METOJIOM I'PAHUYHUX
EJIEMEHTIB

Y cmammi nokaszano, wo cywacui 6azamosidepHi npouecopu, pazom 3 b6azamosdeprumu
epaghiunumu npoyecopamu, moxcyms 3abeznequmu CynepKkomn'romepry nomyxcricmo 3a
eapmocmi obaadnanns do 300 doa. CIIA. Oonax 6uKopucmamus MaxKux HOMY»3cCHOCmel
nepedbauae npozpamuy niompumky cmandapmie OpenMP, MPI, CUDA a6o OpenCL. Odnax
b6azamo 006MuUCAI08AAbHUX 3A60aHb GUPIWYIOMbCA HaAOazamo weudwie i3 3aCMOCYBAHHAM
Oibaiomex npozpam uuceavnozo anaaizy. Ilpedocmaeaeno npuxaiadu 3acmocy8anHs maxux
bioaiomex ax BLAS a6o LAPACK ma nepeeazu ix 3acmocyeanwns npu 06azamonomoxogomy
npozpamyeanHi.

Karouoei caosa: memoo eparuunux enemenmis, 6idiniomexu npoepam uuceavhoo ananizy, CUDA,
OpenCL.
Dopm. 5. Puc. 2. Taba. 2. Tim. 11.

Maueii Ilanbunk
DOPEKTUBHOE UCITOJIb30OBAHUE COBPEMEHHOM

KOMITBIOTEPHO! TEXHUKU HA TPUMEPE ITIPUMEHEHUS
BUBJINOTEK ITPOI'PAMM YNCJIEHHOI'O AHAJIM3A
I10 METOAY T'PAHNYHBIX SJIEMEHTOB

B cmamve nokxazano, umo coepemenHnbie MHO200epHbIE NPOUECCOPbL, 8MecHie ¢
MHO20510epHbIMU 2PAPUUECKUMU NpPOUECcCOpamu, Mo2ym 00ecnevuntv CynepKoMnbiomepHyo
Mmougpocmo npu cmoumocniu 060pyoosanus: 0o 300 doa. CIIIA. Odnakxo ucnoav3oséanue maxux
MowHocmell npednoaazaem npozpammuyro noddepxcky cmandapmoé OpenMP, MPI, CUDA uau
OpenCL. QOonarxo muozue 6blMUCAUMEAbHBIE 3A0A4U PEWAOMCsa HAMHO20 OGbicmpee ¢
npumenenuem Oubauomex npozpamm HucieHHoz2o auaausa. Ilpedcmaesaenvt npumepoi
npumenenus maxux oubauomex xax BLAS uau LAPACK u npeumywecmea ux npumenenus npu
MHO20NOMOK080M NPOPAMMUPOGAHUN.

Karouesvie caosa: memood 2panu4HbixX 31eMeHMO8, OUOUAUOMEKU NPOSDAMM HUCACHHO20 AHAAU3A,
CUDA, OpenCL.

! PhD, Lublin University of Technology, Poland.

© Maciej Panczyk, 2013

HOBUHM CBITOBOI HAYKHU 463

Effective use of the computational capabilities of modern many-processors
hardware, supported by vector multiprocessors implemented on graphics cards,
requires the use of complicated programming standards such as OpenMP, MPI,
CUDA or OpenCL. For engineers or even programmers not familiar with these high
performance computing standards it is an significant barrier. The question is how to
use the enormous performance of modern cheap (available for under $300) equip-
ment without the deep knowledge of programming or multiprocessor hardware. The
solution is to allpy the existing and still developing numerical libraries which take full
advantage of modern computing equipment.

Widely known and used BLLAS (Basic Linear Algebra Subroutine) (BLAS, 2013)
and LAPACK (Linear Algebra PACKage) libraries (LAPACK, 2013) allow for effec-
tive use of high-speed cache memory build in processors. The application of only those
basic library allows to speed up the computation in dozens of times. The second rea-
son for the use of libraries is to facilitate the programmer to deplay the optimized accu-
mulated in the form of library procedures related to the calculations. Instead of cod-
ing each time the traditional numerical methods a programmer can simply use the
library functions. Constant hardware development entails the creation of new libraries.

General-Purpose computing on Graphics Processing Units (GPGPU) also pro-
vides their implementations: cuBLAS — the library provided by NVIDIA
Corporation, in their Compute Unified Device Architecture (CUDA) (CUDA,
2013) solution, CULA (CULA, 2013) — a set of GPU-accelerated linear algebra
libraries utilizing the NVIDIA CUDA parallel computing architecture. Similar solu-
tions for open standard — OpenCL (Open Computing Language) (KHRONOS,
2013): APPML (Accelerated Parallel Processing Math Libraries) (AMDCL, 2013)
maintained by ATI and the non-profit technology consortium Khronos Group.

These technologies dramatically improve the computation speed of sophisticat-
ed mathematics. The effects of the implementation of selected numerical libraries
were traced on the example of boundary element method calculation of two-dimen-
sional planar capacitor model, described by constant boundary elements.

Diagram of the Boundary Element Method

To trace the possibilities of application of numerical libraries and multithread
programming standards in a boundary element method a few steps of BEM (Sikora,
2007) scheme will be presented.

The first step to use the boundary element method is to transform partial differ-
ential equations into the system of boundary integral equations (BIE) which after dis-
cretization can be Written as (Sikora, 2007):

M-19D
() + 5 () 72D e - pRaEER Ay job-rueoe

where: r is the so-called load point on the boundary, r’ is the "ﬁeld" point, C is the free
term C(r)=0.5, M is the total number of elements, @ represents the potential func-
tion (electric potential in electrostatics), G is the fundamental solution for Laplace
equation, J is the Jacobian of transformation from global (r) to local (£) coordinate
system. The values of @ and d®/dn (normal derivative of @, normal vector n points
outward the domain) are assumed to be constant on each element and equal to the
value at the mid-node of the constant boundary element.

ACTUAL PROBLEMS OF ECONOMICS #12(150), 2013

464 HOBUHU CBITOBOI HAYKMN

The integral functions in the Eq. (1) can be lumped together in A; jand B; ; as fol-
lows:

M-1 M-19D (r')
CND(r)+ S @ (MA (rr)=Y —L—
(r)®(r) ,Z J(F)A () ,Z

The index i from Eq. (2) denotes source points on each element. So, the second
step is to calculate each of A;; and B, ; elements.

To form a set of linear algebraic equations, we take each node in turn as a load
point r and perform the integrations indicated in Eq. (1). This will result in the fol-
lowing matrices:

B,J (r,r") ?2)

o0

[A][e]= [B]HaTH (3)

Matrices [A] and [B] contain functions A;; and B, ; respectively.

Each of the M elements has either a known Dirichlet boundary condition or an
unknown Neumann boundary condition. Hence, Eq. (3) has to be rearranged in
order to introduce the prescribed boundary conditions and group them in the vector
X which contains the unknowns and the vector b’ which contains known, prescribed
boundary conditions, the Eq. (3) can be transformed to:

Ax=Bb’ 4)
In Eq. (4), matrices A and B are formed by a combination of the columns of [A]
and [B] depending on the boundary conditions, i.e., according to whether the values
of [@] or [0®/0n] are known in a given element j or not. By multiplying matrix B and
b’ we will receive rhs vector and the final algebraic equation:
Ax=rhs ®)]
Model description
A simple two-dimensional model of a planar electric capacitor with the inner
square region was discretized in a similar way as presented in Figure 1. The real cal-
culated object was divided into 128 elements on each side of the rectangle, both exter-
nal and internal. A total of 1024 constant boundary elements were received for which
calculations were performed. The resulting square matrices A and B and vector rhs
have the size of 1024*1024 elements.
The Dirichlet boundary conditions were set as follows: on the upper edge
®=10V and lower ®@=-10V. Neuman boundary conditions 0/0n=0 on the left and
right edges.

9)
10 32
40393837 36353433
11 41 31
42 64
12 43 63 30
44 62
13 45 61 29
46 60
14 47 59 28
48 58
15 57 27
4950515253545556
16 26
© 25

17 18 19 20 21 22 23 24
Figure 1. Two-dimensional planar capacitor model with internal square dielec-
trical object discretizations (decreased for better readability)

AKTYAJIbHI [TPOBJIEMW EKOHOMIKN Ne12(150), 2013

HOBUHM CBITOBOI HAYKHU 465

o o

Figure 2. Calculated potential distribution for the planar two-dimensional capacitor

The calculations were performed on a computer with a six-core AMD Phenom
I1 X6 1090T processor and a graphics cheap ($70) card GeForce GT 430.

Numerical libraries overview

In addition to traditional numerical libraries like BLAS, LAPACK and their par-
allel versions PBLAS and SCALAPACK rapid development of based on graphic cards
GPU multiprocessors and related numerical libraries were performed. GPGPU pro-
gramming (general-purpose computing on graphics processor units) uses SIMD (sin-
gle instruction, multiple data) idea which allows for some issues to achieve a very high
performance. It is necessary to adopt the traditional algorithms to specific GPU mul-
tiprocessor cache memory structure. Additionally SIMD processors can use only
non-recursive algorithms. Usually it requires to replace the traditional numerical
algorithms with their less effective non-recursive versions possible to run on the GPU
units. Nevertheless executing such task on a few dozen or a few thousand GPU
processors dramatically increase the calculation speed.

Adding a GPU-acceleration to our application could be performed simply by
calling a library function. The list of some high performance GPU-accelerated
libraries related to NVIDIA CUDA system is below (CUDA, 2013):

— CUBLAS: Dense Linear Algebra — the equivalent of BLAS libraries for
NVIDIA GPUs implemented on top of the CUDA driver. CUBLAS allows to fill
GPU memory with matrix or vector, to call a sequence of CUBLAS functions and
finally to return results back to the host memory.

— CUSPARSE : Sparse Linear Algebra — used for sparse matrices.

— CUFFT: Fourier transforms — used to compute discrete Fourier transform of
complex or real data sets

— LIBM: Standard C Math library,

— CURAND: Pseudo-random and Quasi-random numbers generation,

— NPP: The NVIDIA Performance Primitives library (NPP) — a collection of
image, video, and signal processing functions,

— Thrust: STL-Like Primitives Library delivering GPU-accelerated sort, scan,
transform, and reduction operations.

— OpenACC — user-friendly similar to OpenMP programming method based
on GPU "directives",

— CULA tool — CULA dense — provides accelerated implementations of the
LAPACK and BLAS libraries for dense linear algebra. Contains routines for systems

ACTUAL PROBLEMS OF ECONOMICS #12(150), 2013

466 HOBUHM CBITOBOI HAYKHU

solvers, singular value decompositions, and eigenproblems. CULA sparse which pro-
vides tools for solving large sparse systems.

More similar solutions can be found on the NVIDIA Developer Zone (CUDA,
2013).

An open standard OpenCL also supports such libraries development as
(AMDCL, 2013):

— APPML (Accelerated Parallel Processing Math Libraries) — AMD library
linking BLAS and FFT functions,

— ViennaCL — Library open-source library which support CUDA, OpenCL
and OpenMP, all levels of BLAS for GPUs and multi-core CPU.

— MAGMA (Matrix Algebra on GPU and Multicore Architectures) — very
interesting project delivering linear algebra algorithms for hybrid manycore CPU and
multicore GPU systems.

It should be also mentioned that calculations on systems with multi-GPU cards
require using the MPI standard to utilize more than one graphic card.

Implementation of selected numerical libraries

Before implementing any numerical libraries or code parallelization standard
Boundary Element Method program without any accelerators was investigated to find
its computation time and to analyze various stages of the BEM algorithm.

For the model composed of 256 constant boundary elements on each side of the
boundary object computation time is presented in Table 1.

Table 1. Analysis of execution times of selected stages of the BEM algorithm

BEM algorithm stage Computation time

1| Getting input data - geometry and boundary conditions 140 ms

9 Loops calculating source point impacts on observation points — 10 s
equation (4) stage

3|Data sorting - the stage of equation (5) 1s

4| Equation (5) matrix LU decomposition 2 min 26 s

5| The solution of equation (5) 60 ms

Based on these results of calculating the time presented in Table 1, MEB algo-
rithm was divided into three parts (in order of their influence to global algorithm cal-
culation speed improvement):

— acceleration of equations (5) solving — steps 4 and 5 according to Table 1,

— acceleration of determining elements A;; and B;; — steps 2 and 3 according
to Table 1,

— minor acceleration related to the rest of the BEM algorithm.

The most important, first step, was carried out using a sequence of classical
BLAS and LAPACK functions (DGESV and DGEMM) used to find the solution
vector x of equation (5). Next the library SCALAPACK — PDGESYV function was
used. The last implementation used CUDA (SITPICZYNSKI, POTIOPA, 2011,
SANDERS, KANDROT, 2011) and OpenCL (Scarpino, 2011) libraries (AMDCL,
2013) for calculations. For CUDA environment the CULA library commercial (but
free for registered universities) double precision DGESV function was implemented.

Although OpenCL APPML (Accelerated Parallel Processing Math Libraries)
does not include similar LU decomposition algorithm, available from AMD

AKTYAJIbHI [TPOBJIEMW EKOHOMIKN Ne12(150), 2013

HOBUHU CBITOBOI HAYKH 467

Developer Zone web site example (LUDOpenCLBLAS-linux.zip) (AMDCL, 2013)
was adopted to speed up the equation (5) solution. For the second and the third steps
a user-friendly OpenMP environment was applied. All of these accelerated methods
were compared with the pure algorithm, written in C++. The calculation results were
identical, although the computation time was different. The results are presented in
Table 2.

Table 2. Computation time for the program without the use of numerical
libraries, with BLAS and LAPACK libraries, using CULA library (CUDA) and
using APPML and OpenCL LU method

Without BLAS / BLAS / LAPACK + | CUDA- OpenCL-
acceleration LAPACK OpenMP CULA APPML+LU
Cal culation .
time 10 min 22 s 54 s 57 s 22's 25's
Conclusions

Effective usage of modern equipment allows us to decrease the computation time
from 10 min 22 s to 22 seconds. Thet result was achieved on a simple, typical for home
use hardware. More advanced applications can use solutions dedicated to massively
parallel multiprocessing like NVIDIA K20 GPU multiprocessors for about $4000. It
is interesting to compare it to famous chess matches between Gary Kasparov and
IBM Deep Blue computer. That IBM RS/600 30-node system achieved the compu-
tation speed of about 11 Gflops. Nvidia K20 floating point performance is about 1,17
Tflops and used above PC with GT 430 card about 250 Gflops.

It is important to popularize the effective usage of modern hardware. Presented
application is related with the computer tomography used for screening examinations
of breast cancer.

The results presented in Table 2 confirm the need to use numerical libraries.
Even simple optimization of CPU cache memory, allows us to speed up calculations
for at least 10 times. Generally, complex solution should include CPU multithread
programming standards like OpenMP and MPI, library usage with support of CUDA
/ OpenCL GPGPU programming elements (Labaki at al., 2011). This is the reason
that points further considerations to MAGMA library. Low cost NVIDIA
GeForceGT 430 unit allows us to shorten the calculation speed from 54 to 22 sec-
onds — more than twice. Tested amount of data (maximum 4096 elements were cal-
culated) was not enough to implement the typical OpenMP parallel loop and sections
— the calculation time increased from 54s to 57s (see Table 2).

Most of the numerical libraries were originally written in FORTRAN and then
transferred to the C/C++. Therefore, the matrices A and B should be passed to
library functions in column order as in Fortran.

To use GPU computing it is still necessary to initialize the GPGPU environ-
ment, to allocate GPU memory and to transfer data from the host to the GPU unit
and reverse.

Generally, the use of basic libraries is not difficult and brings a huge performance
boost. GPU versions of these libraries are not so easy to apply, but still a lot easier than
full GPGPU programming including a grid thread and data optimization (Labaki at
al., 2011).

ACTUAL PROBLEMS OF ECONOMICS #12(150), 2013

468 HOBUHM CBITOBOI HAYKHU

References:

AMD OpenCL Zone (2013). http://developer.amd.com/resources/heterogeneous-
computing/opencl-zone.

BLAS Homepage: http://www.netlib.org/blas.

CULA Programmer's guide (2013). http://www.culatools.com/cula_dense_programmers_guide.

KHRONOS OpenCL Homepage: http://www.khronos.org/opencl.

Labaki, J., Ferreira, L., Otavio, S., Mesquita, E. (2011). Constant Boundary Elements on graphics
hardware: a GPU-CPU complementary implementation, J. Braz. Soc. Mech. Sci. & Eng., 33(4):
475-482.

LAPACK Homepage: http://www.netlib.org/lapack.

NVIDIA CUDA Developer Zone (2013). https://developer.nvidia.com.

Sanders, J., Kandrot, E. (2011). CUDA by Example: An Introduction to General-Purpose GPU
Programming, Addison-Wesley.

Scarpino, M. (2011). OpenCL in Action: How to Accelerate Graphics and Computations; Manning
Publications co., NY.

Sikora, J. (2007). Boundary Element Method for Impedance and Optical Tomography, Oficyna
Wydawnicza Politechniki Warszawskiej, Warszawa.

Stpiczynski, P., Potiopa, J. (2011). Solving a kind of boundary-value problem for ordinary differen-
tial equations using Fermi — the next generation CUDA computing architecture. J. Computational
Applied Mathematics, 236(3): 384—393.

CratTd Hagiia no pegakiiii 22.07.2013.

AKTYAJIbHI [TPOBJIEMW EKOHOMIKN Ne12(150), 2013

