
Maciej Panczyk1

EFFECTIVE USE OF MODERN HARDWARE ON THE EXAMPLE
OF SELECTED NUMERICAL LIBRARIES IMPLEMENTATION

IN BOUNDARY ELEMENT METHOD
Modern multicore CPU processors, frequently supported by many-core GPU processors, pro-

vide supercomputer performance for under $300. Unfortunately, it requires advanced program-
ming methods related to OpenMP, MPI, CUDA or OpenCL standards. Instead, many engineer-
ing problems can be resolved much faster using such a hardware, due to simple numerical libraries
implementations. The paper presents the effects of the use of libraries like BLAS or LAPACK and
their recent developments for multithread programming.
Keywords: boundary element method, numerical libraries, CUDA, OpenCL.

Мачей Паньчик
ЕФЕКТИВНЕ ВИКОРИСТАННЯ СУЧАСНОЇ КОМП'ЮТЕРНОЇ

ТЕХНІКИ НА ПРИКЛАДІ ЗАСТОСУВАННЯ БІБЛІОТЕК ПРОГРАМ
ЧИСЕЛЬНОГО АНАЛІЗУ ЗА МЕТОДОМ ГРАНИЧНИХ

ЕЛЕМЕНТІВ
У статті показано, що сучасні багатоядерні процесори, разом з багатоядерними

графічними процесорами, можуть забезпечити суперкомп'ютерну потужність за
вартості обладнання до 300 дол. США. Однак використання таких потужностей
передбачає програмну підтримку стандартів OpenMP, MPI, CUDA або OpenCL. Однак
багато обчислювальних завдань вирішуються набагато швидше із застосуванням
бібліотек програм чисельного аналізу. Представлено приклади застосування таких
бібліотек як BLAS або LAPACK та переваги їх застосування при багатопотоковому
програмуванні.
Ключові слова: метод граничних елементів, бібіліотеки програм чисельного аналізу, CUDA,

OpenCL.

Форм. 5. Рис. 2. Табл. 2. Літ. 11.

Мачей Паньчик
ЭФФЕКТИВНОЕ ИСПОЛЬЗОВАНИЕ СОВРЕМЕННОЙ

КОМПЬЮТЕРНОЙ ТЕХНИКИ НА ПРИМЕРЕ ПРИМЕНЕНИЯ
БИБЛИОТЕК ПРОГРАММ ЧИСЛЕННОГО АНАЛИЗА

ПО МЕТОДУ ГРАНИЧНЫХ ЭЛЕМЕНТОВ
В статье показано, что современные многоядерные процессоры, вместе с

многоядерными графическими процессорами, могут обеспечить суперкомпьютерную
мощность при стоимости оборудования до 300 дол. США. Однако использование таких
мощностей предполагает программную поддержку стандартов OpenMP, MPI, CUDA или
OpenCL. Однако многие вычислительные задачи решаются намного быстрее с
применением библиотек программ численного анализа. Представлены примеры
применения таких библиотек как BLAS или LAPACK и преимущества их применения при
многопотоковом программировании.
Ключевые слова: метод граничных элементов, бибилиотеки программ численного анализа,

CUDA, OpenCL.

НОВИНИ СВІТОВОЇ НАУКИНОВИНИ СВІТОВОЇ НАУКИ462

© Maciej Panczyk, 2013

1
PhD, Lublin University of Technology, Poland.

Effective use of the computational capabilities of modern many-processors

hardware, supported by vector multiprocessors implemented on graphics cards,

requires the use of complicated programming standards such as OpenMP, MPI,

CUDA or OpenCL. For engineers or even programmers not familiar with these high

performance computing standards it is an significant barrier. The question is how to

use the enormous performance of modern cheap (available for under $300) equip-

ment without the deep knowledge of programming or multiprocessor hardware. The

solution is to allpy the existing and still developing numerical libraries which take full

advantage of modern computing equipment.

Widely known and used BLAS (Basic Linear Algebra Subroutine) (BLAS, 2013)

and LAPACK (Linear Algebra PACKage) libraries (LAPACK, 2013) allow for effec-

tive use of high-speed cache memory build in processors. The application of only those

basic library allows to speed up the computation in dozens of times. The second rea-

son for the use of libraries is to facilitate the programmer to deplay the optimized accu-

mulated in the form of library procedures related to the calculations. Instead of cod-

ing each time the traditional numerical methods a programmer can simply use the

library functions. Constant hardware development entails the creation of new libraries.

General-Purpose computing on Graphics Processing Units (GPGPU) also pro-

vides their implementations: cuBLAS – the library provided by NVIDIA

Corporation, in their Compute Unified Device Architecture (CUDA) (CUDA,

2013) solution, CULA (CULA, 2013) – a set of GPU-accelerated linear algebra

libraries utilizing the NVIDIA CUDA parallel computing architecture. Similar solu-

tions for open standard – OpenCL (Open Computing Language) (KHRONOS,

2013): APPML (Accelerated Parallel Processing Math Libraries) (AMDCL, 2013)

maintained by ATI and the non-profit technology consortium Khronos Group.

These technologies dramatically improve the computation speed of sophisticat-

ed mathematics. The effects of the implementation of selected numerical libraries

were traced on the example of boundary element method calculation of two-dimen-

sional planar capacitor model, described by constant boundary elements.

Diagram of the Boundary Element Method
To trace the possibilities of application of numerical libraries and multithread

programming standards in a boundary element method a few steps of BEM (Sikora,

2007) scheme will be presented.

The first step to use the boundary element method is to transform partial differ-

ential equations into the system of boundary integral equations (BIE) which after dis-

cretization can be written as (Sikora, 2007):

(1)

where: r is the so-called load point on the boundary, r’ is the "field" point, C is the free

term C(r)=0.5, M is the total number of elements, Ф represents the potential func-

tion (electric potential in electrostatics), G is the fundamental solution for Laplace

equation, J is the Jacobian of transformation from global (r) to local (ξ) coordinate

system. The values of Ф and ∂Ф/∂n (normal derivative of Ф, normal vector n points

outward the domain) are assumed to be constant on each element and equal to the

value at the mid-node of the constant boundary element.

НОВИНИ СВІТОВОЇ НАУКИНОВИНИ СВІТОВОЇ НАУКИ 463

ACTUAL PROBLEMS OF ECONOMICS #12(150), 2013ACTUAL PROBLEMS OF ECONOMICS #12(150), 2013

| |() | |() ,
Ф

ФФ
1

0

1

1

1

0

1

1

∑ ∫∑ ∫
−

−

−

−

ξξ−
∂

∂
ξξ

∂
−∂ M

=j

+
j

M

=j

+

j)dJ(r'rG
n

)r'(
=)dJ(

n

r'rG
)r'(+(r)C(r)

The integral functions in the Eq. (1) can be lumped together in Ai,j and Bi,j as fol-

lows:

(2)

The index i from Eq. (2) denotes source points on each element. So, the second

step is to calculate each of Ai,j and Bi,j elements.

To form a set of linear algebraic equations, we take each node in turn as a load

point r and perform the integrations indicated in Eq. (1). This will result in the fol-

lowing matrices:

(3)

Matrices [A] and [B] contain functions Ai,j and Bi,j respectively.

Each of the M elements has either a known Dirichlet boundary condition or an

unknown Neumann boundary condition. Hence, Eq. (3) has to be rearranged in

order to introduce the prescribed boundary conditions and group them in the vector

x which contains the unknowns and the vector b’ which contains known, prescribed

boundary conditions, the Eq. (3) can be transformed to:

Ax=Bb’ (4)

In Eq. (4), matrices A and B are formed by a combination of the columns of [A]

and [B] depending on the boundary conditions, i.e., according to whether the values

of [Ф] or [∂Ф/∂n] are known in a given element j or not. By multiplying matrix B and

b’ we will receive rhs vector and the final algebraic equation:

Ax=rhs (5)

Model description
A simple two-dimensional model of a planar electric capacitor with the inner

square region was discretized in a similar way as presented in Figure 1. The real cal-

culated object was divided into 128 elements on each side of the rectangle, both exter-

nal and internal. A total of 1024 constant boundary elements were received for which

calculations were performed. The resulting square matrices A and B and vector rhs

have the size of 1024*1024 elements.

The Dirichlet boundary conditions were set as follows: on the upper edge

Ф=10V and lower Ф=-10V. Neuman boundary conditions ∂Ф/∂n=0 on the left and

right edges.

Figure 1. Two-dimensional planar capacitor model with internal square dielec-

trical object discretizations (decreased for better readability)

НОВИНИ СВІТОВОЇ НАУКИНОВИНИ СВІТОВОЇ НАУКИ464

АКТУАЛЬНІАКТУАЛЬНІ ПРОБЛЕМИ ЕКОНОМІКИ №12(150), 2013ПРОБЛЕМИ ЕКОНОМІКИ №12(150), 2013

∑∑
−

=

−

= ∂
Φ∂

Φ+Φ
1

0
,

1

0
,),(

)(
=),()()()(

M

j
ji

j
M

j
jij r'rB

n

r'
r'rAr'rrC

[][] []

∂
Φ∂=Φ
n

BA

Figure 2. Calculated potential distribution for the planar two-dimensional capacitor

The calculations were performed on a computer with a six-core AMD Phenom

II X6 1090T processor and a graphics cheap ($70) card GeForce GT 430.

Numerical libraries overview
In addition to traditional numerical libraries like BLAS, LAPACK and their par-

allel versions PBLAS and SCALAPACK rapid development of based on graphic cards

GPU multiprocessors and related numerical libraries were performed. GPGPU pro-

gramming (general-purpose computing on graphics processor units) uses SIMD (sin-

gle instruction, multiple data) idea which allows for some issues to achieve a very high

performance. It is necessary to adopt the traditional algorithms to specific GPU mul-

tiprocessor cache memory structure. Additionally SIMD processors can use only

non-recursive algorithms. Usually it requires to replace the traditional numerical

algorithms with their less effective non-recursive versions possible to run on the GPU

units. Nevertheless executing such task on a few dozen or a few thousand GPU

processors dramatically increase the calculation speed.

Adding a GPU-acceleration to our application could be performed simply by

calling a library function. The list of some high performance GPU-accelerated

libraries related to NVIDIA CUDA system is below (CUDA, 2013):

– CUBLAS: Dense Linear Algebra – the equivalent of BLAS libraries for

NVIDIA GPUs implemented on top of the CUDA driver. CUBLAS allows to fill

GPU memory with matrix or vector, to call a sequence of CUBLAS functions and

finally to return results back to the host memory.

– CUSPARSE : Sparse Linear Algebra – used for sparse matrices.

– CUFFT: Fourier transforms – used to compute discrete Fourier transform of

complex or real data sets

– LIBM: Standard C Math library,

– CURAND: Pseudo-random and Quasi-random numbers generation,

– NPP: The NVIDIA Performance Primitives library (NPP) – a collection of

image, video, and signal processing functions,

– Thrust: STL-Like Primitives Library delivering GPU-accelerated sort, scan,

transform, and reduction operations.

– OpenACC – user-friendly similar to OpenMP programming method based

on GPU "directives",

– CULA tool – CULA dense – provides accelerated implementations of the

LAPACK and BLAS libraries for dense linear algebra. Contains routines for systems

НОВИНИ СВІТОВОЇ НАУКИНОВИНИ СВІТОВОЇ НАУКИ 465

ACTUAL PROBLEMS OF ECONOMICS #12(150), 2013ACTUAL PROBLEMS OF ECONOMICS #12(150), 2013

solvers, singular value decompositions, and eigenproblems. CULA sparse which pro-

vides tools for solving large sparse systems.

More similar solutions can be found on the NVIDIA Developer Zone (CUDA,

2013).

An open standard OpenCL also supports such libraries development as

(AMDCL, 2013):

– APPML (Accelerated Parallel Processing Math Libraries) – AMD library

linking BLAS and FFT functions,

– ViennaCL – Library open-source library which support CUDA, OpenCL

and OpenMP, all levels of BLAS for GPUs and multi-core CPU.

– MAGMA (Matrix Algebra on GPU and Multicore Architectures) – very

interesting project delivering linear algebra algorithms for hybrid manycore CPU and

multicore GPU systems.

It should be also mentioned that calculations on systems with multi-GPU cards

require using the MPI standard to utilize more than one graphic card.

Implementation of selected numerical libraries
Before implementing any numerical libraries or code parallelization standard

Boundary Element Method program without any accelerators was investigated to find

its computation time and to analyze various stages of the BEM algorithm.

For the model composed of 256 constant boundary elements on each side of the

boundary object computation time is presented in Table 1.

Table 1. Analysis of execution times of selected stages of the BEM algorithm

Based on these results of calculating the time presented in Table 1, MEB algo-

rithm was divided into three parts (in order of their influence to global algorithm cal-

culation speed improvement):

– acceleration of equations (5) solving – steps 4 and 5 according to Table 1,

– acceleration of determining elements Ai,j and Bi,j – steps 2 and 3 according

to Table 1,

– minor acceleration related to the rest of the BEM algorithm.

The most important, first step, was carried out using a sequence of classical

BLAS and LAPACK functions (DGESV and DGEMM) used to find the solution

vector x of equation (5). Next the library SCALAPACK – PDGESV function was

used. The last implementation used CUDA (SITPICZYNSKI, POTIOPA, 2011,

SANDERS, KANDROT, 2011) and OpenCL (Scarpino, 2011) libraries (AMDCL,

2013) for calculations. For CUDA environment the CULA library commercial (but

free for registered universities) double precision DGESV function was implemented.

Although OpenCL APPML (Accelerated Parallel Processing Math Libraries)

does not include similar LU decomposition algorithm, available from AMD

НОВИНИ СВІТОВОЇ НАУКИНОВИНИ СВІТОВОЇ НАУКИ466

АКТУАЛЬНІАКТУАЛЬНІ ПРОБЛЕМИ ЕКОНОМІКИ №12(150), 2013ПРОБЛЕМИ ЕКОНОМІКИ №12(150), 2013

BEM algor ithm stage Computation time
1 Getting input data - geometry and boundary conditions 140 ms

2 Loops calculating source point impacts on observation points –
equation (4) stage

10 s

3 Data sorting - the stage of equation (5) 1 s
4 Equation (5) matrix LU decomposition 2 min 26 s
5 The solution of equation (5) 60 ms

Developer Zone web site example (LUDOpenCLBLAS-linux.zip) (AMDCL, 2013)

was adopted to speed up the equation (5) solution. For the second and the third steps

a user-friendly OpenMP environment was applied. All of these accelerated methods

were compared with the pure algorithm, written in C++. The calculation results were

identical, although the computation time was different. The results are presented in

Table 2.

Table 2. Computation time for the program without the use of numerical

libraries, with BLAS and LAPACK libraries, using CULA library (CUDA) and

using APPML and OpenCL LU method

Conclusions
Effective usage of modern equipment allows us to decrease the computation time

from 10 min 22 s to 22 seconds. Thet result was achieved on a simple, typical for home

use hardware. More advanced applications can use solutions dedicated to massively

parallel multiprocessing like NVIDIA K20 GPU multiprocessors for about $4000. It

is interesting to compare it to famous chess matches between Gary Kasparov and

IBM Deep Blue computer. That IBM RS/600 30-node system achieved the compu-

tation speed of about 11 Gflops. Nvidia K20 floating point performance is about 1,17

Tflops and used above PC with GT 430 card about 250 Gflops.

It is important to popularize the effective usage of modern hardware. Presented

application is related with the computer tomography used for screening examinations

of breast cancer.

The results presented in Table 2 confirm the need to use numerical libraries.

Even simple optimization of CPU cache memory, allows us to speed up calculations

for at least 10 times. Generally, complex solution should include CPU multithread

programming standards like OpenMP and MPI, library usage with support of CUDA

/ OpenCL GPGPU programming elements (Labaki at al., 2011). This is the reason

that points further considerations to MAGMA library. Low cost NVIDIA

GeForceGT 430 unit allows us to shorten the calculation speed from 54 to 22 sec-

onds – more than twice. Tested amount of data (maximum 4096 elements were cal-

culated) was not enough to implement the typical OpenMP parallel loop and sections

– the calculation time increased from 54s to 57s (see Table 2).

Most of the numerical libraries were originally written in FORTRAN and then

transferred to the C/C++. Therefore, the matrices A and B should be passed to

library functions in column order as in Fortran.

To use GPU computing it is still necessary to initialize the GPGPU environ-

ment, to allocate GPU memory and to transfer data from the host to the GPU unit

and reverse.

Generally, the use of basic libraries is not difficult and brings a huge performance

boost. GPU versions of these libraries are not so easy to apply, but still a lot easier than

full GPGPU programming including a grid thread and data optimization (Labaki at

al., 2011).

НОВИНИ СВІТОВОЇ НАУКИНОВИНИ СВІТОВОЇ НАУКИ 467

ACTUAL PROBLEMS OF ECONOMICS #12(150), 2013ACTUAL PROBLEMS OF ECONOMICS #12(150), 2013

 Without
acceleration

BLAS /
LAPACK

BLAS / LAPACK +
OpenMP

CUDA-
CULA

OpenCL-
APPML+LU

Calculation
time 10 min 22 s 54 s 57 s 22 s 25 s

References:
AMD OpenCL Zone (2013). http://developer.amd.com/resources/heterogeneous-

computing/opencl-zone.

BLAS Homepage: http://www.netlib.org/blas.

CULA Programmer's guide (2013). http://www.culatools.com/cula_dense_programmers_guide.

KHRONOS OpenCL Homepage: http://www.khronos.org/opencl.

Labaki, J., Ferreira, L., Otavio, S., Mesquita, E. (2011). Constant Boundary Elements on graphics

hardware: a GPU-CPU complementary implementation, J. Braz. Soc. Mech. Sci. & Eng., 33(4):

475–482.

LAPACK Homepage: http://www.netlib.org/lapack.

NVIDIA CUDA Developer Zone (2013). https://developer.nvidia.com.

Sanders, J., Kandrot, E. (2011). CUDA by Example: An Introduction to General-Purpose GPU

Programming, Addison-Wesley.

Scarpino, M. (2011). OpenCL in Action: How to Accelerate Graphics and Computations; Manning

Publications co., NY.

Sikora, J. (2007). Boundary Element Method for Impedance and Optical Tomography, Oficyna

Wydawnicza Politechniki Warszawskiej, Warszawa.

Stpiczynski, P., Potiopa, J. (2011). Solving a kind of boundary-value problem for ordinary differen-

tial equations using Fermi – the next generation CUDA computing architecture. J. Computational

Applied Mathematics, 236(3): 384–393.

Стаття надійшла до редакції 22.07.2013.

НОВИНИ СВІТОВОЇ НАУКИНОВИНИ СВІТОВОЇ НАУКИ468

АКТУАЛЬНІАКТУАЛЬНІ ПРОБЛЕМИ ЕКОНОМІКИ №12(150), 2013ПРОБЛЕМИ ЕКОНОМІКИ №12(150), 2013

