300 HOBUHU CBITOBOI HAYKU

Aleksander Wojdyga'

TOWARDS INTELLECTUAL PROPERTY THEFT PREVENTION:
ECONOMIC SIGNIFICANCE OF AUTOMATIC
SOFTWARE PLAGIARISM VERIFICATION

Software plagiarism can have destructive effects on company's economy or one's personal
carrier. Easy access to online source code databases encourages such behaviour. Authorship of a
unit of software should be easily determined. This is a problem in education at the university level,
especially for the off-site or e-learning courses. Verification by human effort is tedious and error-
prone, therefore not acceptable. This article presents expectations and vulnerabilities of automatic
plagiarism verification and presents a general method for solving this problem. A proof-of-concept
code in Haskell functional language implements such an algorithm.

Keywords: automatic plagiarism verification, software plagiarism, intellectual property, theft pre-
vention.

Ounekcanap Boiigura

3AIIOBITAHHS PO3KPAJIAHHIO IHTEJIEKTYAJIbBHOI
BJIACHOCTI: EKOHOMIYHE 3HAYEHHS ABTOMATUYHOI
ITEPEBIPKU ITPOTPAMHOI'O 3ABE3IIEYEHHSA HA IIJIAI'TAT

Y cmammi nokazano, wo naaziam y npozpammomy 3abesneveHHi moyce mamu pyuHieHi
Hacaioku 043 Komnanii ma npueamuux oci6. Jleexuii docmyn do oHaatinosux 6a3 daHux euxioHo2o
K00y 3a0x01y€ maKy nogedinky. ABmopcmeo KOHKPemHo20 NPoPpamMHo20 3abe3neveHHs mae 6ymu
aezko susnauysane. ILle npobaema y cehepi oceimu na ynisepcumemcvkomy pieri, 0co6aueo 6 pasi
giddaaenoeo abo eaexmponnoeo nasuanus. Ilepesipka epyuny emomausa i nenadiina, momy
Henpuiinamua. Onucano O4IKy8awHs i 6pazaueocmi aemMomMamu4Hoi nepeeipku Ha naaziam i
npedcmae.aeno 3a2aibHuil Memoo eupiuenns yici npooaemu. Taxuii aseopumm 3acmocosanuii 04
K00y, axuli 00600ums npasuAbHicmy Konuenuii, Ha ynxyionaavriii mosi Haskell.

Karouosi caosa: agmomamuuna nepegipka Ha naaziam, naaziam y npoepamHomy 3a6e3nevenii,
inmenexmyanvha eaacHicms, 3anobicans pO3KPAOAHHSIM.

Anekcanap Boiigpira

MPEJOTBPAIIIEHUE XUINEHU MTHTEJIEKTYAJIbHOM
COBCTBEHHOCTU: DKOHOMMWYECKOE 3HAYEHUE
ABTOMATUYECKO¥ ITPOBEPKU ITPOTPAMMHOTI'O

OBECIIEYEHUA HA IIIATTAT

B cmamve nokazano, wmo naacuam 6 npocpammmHom obecneveHuu Moiyjcem umemo
paspywiume.stvle nOCAe0CMeust 043 Komnanuu u vacmuolx auy. Jleexuii docmyn K onaaiinossim
b6azam OaHHBIX UCX00HO20 K0Oa noowpsiem maxoe nogeoeHue. Aemopcmeo KOHKPEmMHO20
npozpammnozo obecneveHuss 004xcHO Obimb ae2Ko onpedeasemo. Imo npobaema 6 cepe
00pa3zoeanus Ha YHUGEPCUMEMCKOM YPoGHe, 0COOEHHO 8 cayHae YOa1eHH020 UAU IAEKIMPOHHO20
oOyuenus. Ilposepka epy«nylo ymomumenvha u Henadexcna, nosmomy nenpuemiema. Onucano
0XCUOAHUA U YAZGUMOCHIU AGMOMAMUYECKOU NPOGEPKU HA niazuam u npedcmaeien oougui
Mmemood pewenuss 3moi npobaemvt. Taxoi arcopumm npumenen 04s Ko0da, OOKA3blEAIOULE20
npasuibHocms Konuenuuu, Ha ynxyuonarvrnom azoike Haskell.

! Institute of Computer Science, Lublin University of Technology, Poland.

© Aleksander Wojdyga, 2013



HOBUHU CBITOBOI HAYKU 301

Karwuegvie caosa: asmomamuueckas npoeepka Ha nadeuam, HAARUAM 8 NPOSPAMMHOM
obecneyenuu, UHMeNIeKMYANbHAS COOCMEEHHOCIY, NPe0omepaujeHue XuueHuil.

1 Software plagiarism. Software development is a process involving human effort
and machine work. Number of different tools and integrated development environ-
ments (IDE) such as Microsoft Visual Studio [9], The Eclipse Platform [16] or
QtCreator [10] improve editorial tasks, binary package generation or even refactoring
tasks. Software design patterns allow for component reuse and solving general prob-
lems. However, there is always a part of software, unique in every system, which must
be handwritten. Elimination of human work may be possible in future due to
advancements of model-driven software engineering [13].

Education at the university level in computer science or related courses (mathe-
matics, physics) usually involves classes in computer programming languages, algo-
rithms or software development engineering. During examinations or laboratory
classes students are required to produce complete programs, modules or other appro-
priate programming language parts in a conditions of controlled independence.
Cheating, involving communication with other students or copying part of solutions,
results in failed exams and, possibly, legal repressions.

Copying can be a problem for e-learning online courses involving programming
languages. Except standard online tests, students sometime have to produce comput-
er programmes. As all major e-learning platforms use login and password authentica-
tion scheme, it is impossible to check communication between students. They can
work together, creating one unit of software and submitting it to the online system.
Moreover, author is aware of at least one students' online forum with restricted access
(unavailable to non-students). Users of this forum share solutions, especially com-
puter programs. Solution containing alleged plagiarism has to be checked manually
and compared to other programs. Depending on student's skills such comparison can
be tiresome and error-prone. Program author can use various camouflage techniques,
as described in following subsection.

Computer programme source code can be stored in many online hosting servic-
es such as SourceForge [15], Google Code [4] or Savannah [12]. Although these serv-
ices allow for strict access control, most of the projects have granted the read-only
access to general public. Therefore, one can browse and download any file. Quality of
this software varies, simply copying the software also copies the bugs, unwanted fea-
tures, performance problems etc. As the author committing plagiarism will not reveal
the origin of source code, the correction of these errors is made very difficult.
Computer science student may receive unsatisfactory grade. A software development
company cannot allow this, for it results in increased costs. Despite copying reduces
programming effort and results in shorter development time, it can result in subtle
errors or incomprehensible source code. The maintain costs increase, as bugs are
duplicated throughout the system.

It must be noted that this article does not cover software patents. The author does
not see any possibility for automation, as these issues, though very interesting, are
usually treated on a very high design and analysis level. This paper tries to confront
with the, so called, copy-paste development method. In fact, there are software
licences that allow for this, consider for example donating the source code to public

ACTUAL PROBLEMS OF ECONOMICS, #4 (142), 2013



302 HOBUHU CBITOBOI HAYKU

domain, the most accessible introduction is contained in [6]. The intellectual prop-
erty theft happens in other place — by denying the authorship of original software.
While the citations are welcome either in software development, education or scien-
tific work, appropriation of other people's work may be an interesting psychological
issue.

1. 1 Software clones camouflage techniques. Probably the most extensive survey on
software plagiarism and verification methods is the technical report for Queen's
University, Canada [11]. Reader is referred to that document, as it contains well writ-
ten classification and rich bibliography. This section briefly presents the basic notions.

A code fragment, copied and pasted without or with minor modifications is
called a software clone or a code clone. If modifications result in different behaviour
— different output for the same input - one can assume it is a new, original piece of
software. In computer science education, however, a student may wish to hide the fact
of copying and pasting. Here follows a list of common camouflage techniques and
possible countermeasures.

1. Indentation changes and white spaces deletion or addition. Trivial to perform;
at first glance two dubious programmes will look very different. However, with a stan-
dard Unix program indent it is possible to translate any given source code to standard
indentation rules.

2. Comments modifications. Parsers and compilers discard comments by
default.

3. Variable renaming. Easy to perform with a help of refactoring tools. Needs
algorithmic treatment.

4. Function parameters reordering. Again one of the refactoring issues.

5. Redundant instructions insertion. Probably the most interesting approach,
covered thoroughly in this paper.

The last point requires some originality and practical programming skills. It can-
not be accomplished by an inexperienced or undereducated student. This list is,
clearly, not closed. The author will be happy to know other camouflage techniques.

Figure 1. AST for expression 1 + sin(x * 3)

1.2 Verification methods. There is a number of software plagiarism verification meth-
ods. They work on different levels of source code: textual, syntactical or semantical.

AKTYAJIbHI NTPOBJIEMW EKOHOMIKU, Ne4 (142), 2013



HOBUHU CBITOBOI HAYKU 303

The textual approach will compare character strings in two alleged programmes.
This method is very simple and very efficient, but applicable only to pasting without
modifications. Standard Unix tool diff is capable resolving this kind of software
clones. However, simple variable renaming causes false negative answer.

The token analysis lies somewhere between the textual and syntactical levels.
The tokens are lexical entities of the programming language like operators, variable
occurrences, keywords etc. Source code is first preprocessed and translated to token
stream and substring match is applied to that stream. The most prominent example
of software implementing this method is CCFinder, see [5] for details.

An abstract syntax tree (AST) is an intermediate compiler representation of
expressions. Every node of the tree represents variable, operator, function application
etc. In general, AST is structure of an expression, comparing syntax trees is effective-
ly a comparison of expression in an algorithmic way. Figure 1 contains an example
AST for expression 1+sin(x*3).

geanf (YT, Zx):

sin (x / 335.

Figure 2. Program dependency graph

Tree matching algorithms with parameterized hashing functions were used in a
tool called CloneDR. It allows for concurrent work and can manage with variable
renaming, see [2] for details.

1. scanf ("%f", &x);

2.a=12;
3. b =sin (x/3);
4.at+=a*b;

Program dependency graph (PDQG) is a directed graph, whose nodes are instruc-
tions and edges are computational dependencies. Node B is computationally depend-
ent over node A if variable modified in instruction A is used in instruction B. Reader
may be more familiar with a notion of data flow. This technique is very robust to han-
dle variable renaming or instruction insertion and deletion. The drawback of this
approach is the non-polynomial computation complexity. Depending on data struc-
tures applied, one may reach the isomorphic subgraph-matching, classical NP-com-
plete problem. There are possible performance optimisations, consider for example
GPLAG [8] and node thresholds applied there. This subject in under active research,
please refer to [3].

ACTUAL PROBLEMS OF ECONOMICS, #4 (142), 2013



304 HOBUHU CBITOBOI HAYKU

Figure 2 illustrates a PDG for the C-source snippet on Listing 1: An example
C source code. The instruction in the second line can get exchanged with the pre-
vious one or the next one, as there are no connections with appropriate nodes on
Figure 2.

2. Plagiarism verification algorithm and its implementation. The verification algo-
rithm is expected to handle the camouflage techniques presented in previous section.
Despite the lack of any exhaustive studies in software plagiarism in education, the
author considers insertion of dummy instructions and identifier renaming as the two
most common in students' assignments. Please, note that a change in instruction
sequence or instruction deletion should be considered as creating new, original unit
of software. When done at random, it is expected to result in a failed exam.

There are some non-obvious notions used in the algorithm. The computational
result of a function is built from the following objects (variables, arrays etc):

1. objects used in the return statement;

2. objects used in I/0 functions (including, e.g., database function);

3. objects modified in the function body, either global or passed as the argument.

In a general-purpose imperative programming languages (such as C, C++, Java)
there exists a main() function or its substitute. The computational result of a main()
function does not contain the third point from the enumeration above. The necessary
input are variables used to determine the computational result. They either appear on
the right-hand-side of assignment instructions or are passed as argument to function
modifying one of the computational result.

Nodes in a PDG, not reachable for one another, allow to change the order of rel-
evant instructions. Such instructions are called computationally independent.

The algorithm. Here follows the complete algorithm, it is applied for every func-
tion in a given computer program.

. Construct a abstract syntax tree

. Construct a program dependency graph

. Identify the computational result of the function

. Identify the necessary input

. Remove surplus instructions

. Identify and group computationally independent consecutive instructions
. Compare instructions and groups

Comparison of instructions (original and copied) is applied to normalised
expressions. The normalisation procedure is a translation to prefix notation preserv-
ing operator priorities (including function application). For example, both expres-
sions | + sin(x * 3) and sin(3 * x) + 1 are translated to + sin * x 3 1. Comparison of
normalised expressions results in a identifier renaming scheme. This scheme will be
void - no identifier substitution possible - for structurally different expressions. In this
case, the comparison stops at first operator mismatch. Theoretical computer scien-
tists call this property the o-equivalence, probably the best (conceptually nearest)
example is the a-equivalence for the A-calculus. Reader is referred to classical posi-
tions [1] or [14] for full explanation of this notions.

All steps of the algorithm are linear referring to the size of input. Only the sixth
step requires non-polynomial computation. If a function contains many variable dec-
larations, this can be a performance problem. However, it is assumed that the author

NN R W~

AKTYAJIbHI NTPOBJIEMW EKOHOMIKU, Ne4 (142), 2013



HOBUHU CBITOBOI HAYKU 305

hiding a copy would insert surplus instructions quite often. Thus, the sequences of
computationally independent instructions will be short.

The implementation. The algorithm has been partially implemented using
Haskell functional language with a help of Language.C library. It is obvious that this
library and implementation of the said algorithm in only applicable to C program-
ming language. This is probably the most popular, general purpose language [7], it is
also present in all computer science studies at the university level. The functional lan-
guage allows for easy processing the AST through advanced pattern matching; this
feature is present in all functional programming languages. It is also easy to manual-
ly programme the normalisation of expressions or other recursive properties such as,
for example, the computational result of a function.

The current state of implementation does not allow for performance testing. Two
major steps are missing: construction of PDG and identification of computationally
independent instructions. This in not uncommon, for instance very advanced tool
such as GPLAG does not create PDG and depends on external tools. On the other
hand, as a consequence of chosen language and library, the functions for computa-
tional results and necessary input have been produced with a little effort.

3 Summary and future work. As stated in the previous section, the verification
algorithm has not been fully implemented. The short-term goal is complete Haskell
module ready for performance tests. More interesting is the presupposed mid-term
goal. Imagine online scoring system, which not only compiles and runs students' pro-
grammes but also checks all pairs of authors for presence of software clones. Students
will receive information about correctness, efficiency and originality of their solu-
tions. Full textual information like: "You have copied function factorial from student
John Smith but changed variable counter to i and parameter n to x" should discour-
age copying and, more important, sharing solutions.

Some parts of the algorithm may have one more possible application. Efficient
identification of computationally independent instructions allows for automatic par-
allelisation. Prevalence of multi-core processors and multi-processor computers
entails a considerable use of these technologies. While students are educated towards
parallel programming, one could use some tools for automatic parallelisation. This
subject is currently under significant development worldwide. It may be possible to
achieve some satisfactory results in future on the basis of the algorithm presented in
this article.

References:

Barendregt, H. P. (1984). The Lambda Calculus - Its Syntax and Semantics. Vol. 103. North-
Holland.

Baxter, I. D. et al. (1998). "Clone Detection Using Abstract Syntax Trees". In: ICSM, pp. 368-377.

Chen, R. et al. (2010). Author Identification of Software Source Code with Program Dependence
Graphs. In: Proceedings of the 2010 IEEE 34th Annual Computer Software and Applications Conference
Workshops. COMPSACW '10. Washington, DC, USA: IEEE Computer Society, pp. 281-286.

Google Code. URL: http://code.google.com/.

Kamiya, T., Kusumoto, S. and Inoue, K. (2002). CCFinder: A Multilinguistic Token-Based Code
Clone Detection System for Large Scale Source Code. In: IEEE Transactions on Software Engineering 28,
pp. 654-670.

Lessig, L. (2005). Free culture. New York: Penguin Books. URL: http://openlibrary.org.

Lipovaca, M. (2011). Learn You a Haskell for Great Good!: A Beginner's Guide. 1st. San Francisco,
CA, USA: No Starch Press.

ACTUAL PROBLEMS OF ECONOMICS, #4 (142), 2013



306 HOBUHU CBITOBOI HAYKU

Liu C. et al. (2006). GPLAG: detection of software plagiarism by program dependence graph analy-
sis. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. KDD '06. Philadelphia, PA, USA: ACM, pp. 872-88]1.

Microsoft Visual Studio. URL: http://www.microsoft.com/visualstudio/.

QtCreator. URL: http://qt.nokia.com/products/developer-tools/.

Roy, C. K. and Cordy, J. R. (2012). A Survey on Software Clone Detection Research. Tech. rep. 2007-
541. Accessed June. 25. Queen's University, 2007. URL: http://www.cs.queensu.ca/
TechReports/Reports/2007-541.pdf.

Savannah. URL: http://savannah.gnu.org/.

Schmidt, D. C. (2006). Model-Driven Engineering". In: IEEE Computer 39.2, pp. 25-31.

Sorensen M. and Urzyczyn P. (1998). Lectures on the Curry-Howard isomorphism. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.7385.

SourceForge. URL: http://sourceforge.net/.

The Eclipse Platform. URL: http://www.eclipse.org/.

Crattd Hafgiia no penakitii 22.08.2012.

AKTYAJIbHI NTPOBJIEMW EKOHOMIKU, Ne4 (142), 2013



