334 HOBUHU CBITOBOI HAYKU

Kamil Zyla'

ECONOMIC ASPECTS OF USER-ORIENTED
MODELING FOR MOBILE DEVICES

Nowadays, when developing an application compatible with the majority of operating systems
and devices is hardly possible, it is important to obtain the greatest possible return on investment in
its creation. The main goal of MDE is to improve short-term (by increasing functionality of basic
software particles) and long-term productivity (by reducing the rate of obsolescence of these parti-
cles). This article introduces a method of modeling mobile applications giving the mentioned ben-
efits.

Keywords: MDE, mobile technologies, software engineering, Aergia modeling language.
Kamins Kuna

EKOHOMIYHI ACITEKT OPIEHTOBAHOT'O HA KOPUCTYBAYA
MO/JIEJIIOBAHHA MOBLJIbHUX ITPUCTPOIB

Y cmammi nokasano, wio na danuii wac po3poéka dooamkie, cymicHux i3 Oiavuwicmro
onepauiinux cucmem i npucmpoie, Hagpsa0 uu moxcauea. Baxciuea maxcumarvno moxcauea
6iddaua 6i0 ineecmuuini y ix cmeopenns. OcHoéHa Mmema MOOYAbHO20 KOHCMPYIOGAHHA -
nideuuweHHs KopomKocmpokogoi (3a paxyHok 30iiblieHHA (OYHKUIOHAAbHOCMI OCHOGHUX
CKAA008UX NPOPAMHO20 3a0e3ne4enHs) I 00820cmMpoxkoeoi npodykmuenocmi (3a paxyHox
3HUMCeHHA weudKkocmi 3acmapieanns). Ilpedcmasaeno memoo modearo8anus MoobiAbHUX
dodamkie 6uxodauu 3i 6KA3AHUX nepesae.

Karuosi caosa: MDE, mobinvhi mexnonoeii, po3pobka npoepamHoeo 3abe3neveHus, Mo8d
Modentosants Aergia.

Kamuip Knna

BSKOHOMMWYECKUE ACIIEKTbl OPUEHTUPOBAHHOI'O
HA TI0JIB3OBATEJIA MOJAEJINPOBAHUA
MOBWJIBHBIX YCTPOVCTB

B cmamve nokxazano, wmo 6 nacmoauwiee epemsa papaboma npua0’ceHuil, cO8MeCmuMblX
¢ 00AbWMUHCMBOM ONEPAUUOHHBIX CUCmeM U YyCmpoicme, 6psa0 au 603moxcna. Bayxcna
MAKCUMAABHO 603MONCHAS OMOa4a om uneéecmuuuii ¢ ux cozoanue. OcHoéHas ueab MOOYAbHO20
KOHCMPYUPOGAHUA — NOGbIUEHUE KPAMKOCPOUHOU (3a cem ygeauweHus (PYHKUUOHAAbHOCIU
OCHOGHBIX COCMABAAIOUWUX NPOZPAMMHO20 00ecnetenus) u 00420CPOHHOL NPoU3600UMeabHOCINU
(3a cuem cnudxcenus ckopocmu ycmapeganus). Ilpedcmasien memod Moodeauposanus
MOOUABHBIX NPUAOINCEHUT UCX005L U3 YKAZAHHBIX NPEUMYULECTE.

Karouesvie caosa: MDE, modurvHvie mexuonoeuu, paspabomka npoepammHo20 obecneveHus,
A3b1K Modeauposanus Aergia.

1. Introduction. Nowadays application development focuses on mobile platforms
and the Internet, which has become an easily accessible, commonly used tool and
source of information. Also mobile devices (e.g., tablets and smartphones) are very
commonly used not only as communication tool. According to the studies conduct-
ed by PBS in 2010 for the Office of Electronic Communications, 84.9% of the Poles
declare possessing a mobile phone [1] and 50% declared possessing an Internet link

! Institute of Computer Science, Lublin University of Technology, Poland.

© Kamil Zyla, 2013

HOBUHU CBITOBOI HAYKU 335

[2]. Furthermore, according to the GfKPolonia the share of smartphones (devices
with open operating system and equipped with a touchscreen and/or QWERTY key-
board) in the overall mobile phones market in 2011 was 27.1% [3]. These factors
influence significantly the need for mobile applications, which can be proven by the
fact of increasing (basing on the statistics published in "Google Play" distribution sys-
tem) the number of applications dedicated for Android platform of more than 230
thousands since September 2011 (Fig. 1) [4]. The strength of these trends encourages
to search for the ways of applying MDE concepts in the mobile devices domain.

2. Mobile applications overview. Generally mobile applications can be divided
into 4 main groups: native applications, server-side applications, hybrid applications
and cross-compiled applications [5].

Native applications execute their logic and user interface on a particular mobile
device. Programmer has possibility to i.e. build dedicated user interface, access sen-
sors directly and exploit all platform-specific features. A set of good tutorials and tools
that support well debugging, testing etc. is also available. The main disadvantage of
such kind of applications is the necessity to write and optimize the same application
for each mobile platform. This applications can be also distributed/sold using special
stores like Android Market.

Server-side applications execute their logic and user interface on a special web
server or web servers located somewhere in a network. Client application (e.g., mobile
web browser) just renders the products of this execution. The main advantage is
accessibility by a set of various mobile devices based on different platforms. The main
disadvantages are lack of ability to distribute applications via markets and limited
access to hardware and programming interface capabilities.

Hybrid applications are mixture of native and server-side applications — some of
their logic and user interface is executed on a web server and locally on a mobile
device. Their core logic can be programmed just once and run on a server, although
significant effort is needed to build platform-specific clients, which can be sold via
markets.

Variety of target mobile platforms (Fig. 2) and presented application types caus-
es the demand for searching tools and methods that allows lowering costs and short-
ening time of developing software regardless of its type. This kind of requirements is
met by cross-compiled applications. The main idea is to build a platform-independ-
ent model (textual or graphical) of application and transform it to the fully working
platform-dependent solution. This process can be seen as a part of the model-driven
engineering concept (Fig. 3).

3. Basic notions of MDE. Model-driven engineering (MDE) is a part of software
engineering concept aimed at increasing abstraction layer in a process of creating
software by introducing different models on different levels and improving automa-
tion of this process by introducing model transformations ending on the executable
code [6]. MDE is not well standardized and many approaches can be identified with-
in it. The main are model-driven architecture — a formalized approach proposed by
the object management group, and model-driven software development — less for-
malized and aimed at fast implementation [7]. Introducing MDE concepts in differ-
ent ways depending on the approach is not necessary and misses the main goal of this
paper, thus they will be introduced in the most general way possible.

ACTUAL PROBLEMS OF ECONOMICS, #4 (142), 2013

336 HOBUHU CBITOBOI HAYKU

MDE can improve short-term productivity by increasing the functionality of
basic software particles and long-term productivity by reducing the rate of obsoles-
cence of these particles. Generation of particular software particles is based on
appropriate models and improves productivity of developers. Due to this fact, devel-
oper should influence the final application rather by changing its model than its gen-
erated code. Ensuring the consistency between the model and modernized soft-
ware/application is a quite important issue, because the longer each software particle
remains reusable, the greater is return on investment in its creation. [8]

Android apps on the Android market, July 26, 2012

500,000 1)

450,000

400,000

350,000 2)

300,000

250,000 — All apps 1)
Regular apps 2)

200,000 .
Low guality apps 3)

Total nurmber of apps

150,000
3)

100,000
50,000

0
Sep-2011 Mow-2011 Jan-2012 Mar-2012 May-2012 Jul-2012
Date

Source: appbrain.com
Figure 1. The number of available applications
at the Android market

] O
Windows Others = Android
3,80% 4,30%

4% 4% @ BlackBerry QS

]
ios & Symbian
18,20% .

18% o mios
Android @ Windows
38,90%

7% 39% 0 Others
99559
95559555

oriseress

L
L
LEOL PSS IO SS.
| g

B

Symbian BlackBerry OS
20,60% 14,20%
21% 14%

Source: idc.com
Figure 2. Market share of significant mobile platforms, 2011

AKTYAJIbHI NTPOBJIEMW EKOHOMIKU, Ne4 (142), 2013

HOBUHU CBITOBOI HAYKU 337

Generated Application
Generater Input

User interface

Application model

Logic
Generator

Database
Files Database
Files

Figure 3. Idea of cross-compiled applications [5]

What all MDE approaches have in common is that software has to be described
(modeled) using special notation or modeling language (either textual or graphical).
These languages are inherently suited to solve problems and represent ideas in a way
typical for a particular domain (e.g., mobile applications), so they are called domain-
specific languages (DSLS) in opposite to general purpose languages (GPLs) [7].
Domain can be defined as "a bounded area of knowledge or interest” [9].

Properly designed DSL incorporates abstract syntax, one or few "work" syntax-
es, description of mapping between abstract and real syntax, and description of
semantics (the meaning of particular symbols and their function). Abstract syntax is
usually defined by metamodel, which can be also used to describe semantics. Model
created using DSL is called domain-specific model (DSM). Applications can be
modeled using different DSMs that are translated into one application during code
generation phase [7].

Description of method of creating models should be unified and formalized.
Such "model of a model", called the metamodel, is a set of concepts (elements,
processes etc.) related to a particular domain. If the model is an abstraction of a real-
world phenomena, the meta-model is an abstraction showing the properties of such
models and defining i.e. basic elements which can occur in the model [10].

4. AML short characteristics. The growing need for new mobile applications
causes a demand for cheap, proven and easy to learn methods of rapid app develop-
ment and for the professionals knowing how to implement them. It also causes a
demand for appropriate designing tools (editors) and languages dedicated for model-
ing specific domains (solving specific problems).

Existing tools are not sufficient to model mobile domain in easy and expressive
way taking also into account interactions between user and application and computa-
tion/data flows within it. Textual solutions (e.g., mobl, Applause) do not cover whole
domain and might be difficult to learn and percept. Moreover, this way of creating
model of the same functionality is usually more time consuming and complicated
than while using graphical solutions. At last graphical tools are either too general (like
Interaction flow modeling language) or designed for other domain (like Web model-
ing language) or provide only simple abstraction for programming language state-
ments (like Google App Inventor).

Thus, the author of this paper developed Aergia modeling language (AML) — a
new domain-specific graphical language for modeling mobile applications. The com-
ponents introduced by AML cover the variety of domain-specific areas, including:

ACTUAL PROBLEMS OF ECONOMICS, #4 (142), 2013

338 HOBUHU CBITOBOI HAYKU

database operations, geolocation services, social services, multimedia services, GUI,
content computation, device sensors, communication services etc.

Figure 4 presents a model of a mobile application screen for sending messages.
The numbers of recipients are provided by the Contact picker component. The con-
tent of the message is provided by the Message form component. Both components
are rendered as parts of GUI. Data gathered from the user is passed by the links to the
Send message component which sends the message. Figure 5 presents very small part
of AML metamodel, which is developed using the tools provided by the Eclipse mod-
eling project.

= A

4l NewAMLModel.aml &=

hord

“* | 2F Palette

Contact picker -

< Send message screen

Send message

Farm

[Ferm 1
Message form = -
= =

| Send message |S€nd message =0 k-
L
GPS
Contact picker | Contact picker

4 1 3

StoreDB

i

Figure 4. Example of model made using AML

| H Screen
| = Name | =hnum
] 2 ConnectionType|
: A [YHE|
Connections E ~. Components e
e - Failure
; i Target ™y , = Anchor
|E Connection - T——__|B Component - Transport
= Label | = Name
| = Type "= Type
' Source

Figure 5. Fragment of the AML metamodel

5. Advantages and disadvantages of MDE concepts usage. Despite considerable
resistance in the I'T environment, associated with a complete change of the usual ways
of developing software, MDE technologies are in the scope of the growing group of
institutions responsible for creating lines in construction and maintenance of soft-
ware. Nevertheless, all MDE solutions (including Aergia modeling language), regard-
less the domain, share some similar advantages and disadvantages.

AKTYAJIbHI NTPOBJIEMW EKOHOMIKU, Ne4 (142), 2013

HOBUHU CBITOBOI HAYKU 339

Core benefits of using MDE solutions in a process of software development are
as follows [11]:

1. Speeding up software development — a single component corresponds to
many lines of code (increased abstraction level), development process focuses on
application functionality and not on the implementation details.

2. Good influence on quality of software — good programming patterns imple-
mented in the generator are reproduced in all of generated applications (utilization of
proven software particles), some technical issues might be corrected by modifying the
generator (applications are corrected by generating their code once again), validation
can be performed on a model level.

3. Decreasing costs of software development — shorter time of delivering fully
functional solutions, lower costs of application modifications, lower costs of creating
software for different platforms.

4. Possibility to involve domain experts in a process of software development —
ability to utilize knowledge of domain experts without programming skills and to
facilitate synchronization between business needs and IT solutions.

On the other hand, usage of MDE might be dangerous because of the issues like[12]:

1. Decreasing flexibility of programming — necessity to adhere to the rigid forms
and limits caused by automation of software development and increased abstraction
layer, loss (to some extent) of full control over the resulting application code.

2. Changing requirements for participants of development process — changing
usual ways of developing software by reducing large number of programmers to small
group of experts (responsible for DSL editor and generated code) and moving burden
of creating complete business solutions to the so-called "business engineers”, who
need to gather business requirements and express them in a formal model (quite
demanding task).

3. Risking usage of immature MDE tool (without needed functionality imple-
mented) or mistakes made by inexperienced team, e.g., possibility of accepting
client's requirements hard or even impossible to meet with particular MDE tool
resulting in loosing most of MDE benefits.

6. Summary. Nowadays, when developing one application compatible with the
most of operating systems and devices is hardly possible, it is important to obtain the
greatest possible return on investment in its creation. Model-driven engineering con-
cept gives unique opportunity to meet these requirements (at least in case of some
standard tasks), additionally speeding up development process and involving in it
non-tech people.

The main effort needed, in order to apply MDE to the mobile domain, is to
develop platform-independent method of describing mobile applications (like AML)
and to create generator translating application model into platform-dependent solu-
tion. Return from that investment is obtained due to the two core benefits of MDE-
like solutions: one application model can be the basis for generating applications on
many platforms and changes (depending on their type) can be introduced to applica-
tions by modifying generator or model and generating the code again.

References:

Maj, M. (2012). Telefonia komorkowa: wieksze nasycenie i roznorodnosc, http://di.com.pl/
news/30118, 26.07.

ACTUAL PROBLEMS OF ECONOMICS, #4 (142), 2013

340 HOBUHU CBITOBOI HAYKU

Laskowski, M. (2011). Czynniki zwiekszajqce jakosc uzytkowq interfejsow aplikacji internetowych,
Logistyka, nr 6

Hatalska, N. (2012). Penetracja smartfonow w Polsce — dane za 2011, http://hatalska.com
/2012/02/13/penetracja-smartfonow-w-polsce-dane-za-2011/, 26.07.

AppBrain. (2012). http://www.appbrain.com/stats/number-of-android-apps, 30.07.

Friese, P. (2012). Cross-platform mobile development // https://speakerdesk.com/peterfriese.

den Haan, J. (2012). MDA, Model Driven Architecture, basic concepts, http://www.theenter-
prisearchitect.eu/archive/2008/01/16/mda_model_driven_architecture , 30.07.

Kesik, J. Zyla, K. (2011). Wspolczesne Technologie Informatyczne - Technologie MDE w projek-
towaniu aplikacji internetowych, Wydawnictwo Politechniki Lubelskiej, Lublin.

Schmidt, D. C. (2006). Guest Editor's Introduction: Model-Driven Engineering, Computer 2(39).

Volter, M. (2012). Model-Driven Software Development Tutorial, http://www.voelter.de/data/pre-
sentations/mdsd-tutorial/01_Introduction.pdf, 30.07.

Stahl, M. T. (2006). Volter, Model-Driven Software Development: Technology, Engineering,
Management, Wiley.

den Haan, J. (2012). 15 reasons why you should start using Model Driven Development,
http://www.theenterprisearchitect.eu/archive/2009/11/25/15-reasons-why-you-should-start-using-
model-driven-development, 30.07.

den Haan, J. (2012). 8 reasons why Model-Driven Development is dangerous, http://www.theenter-
prisearchitect.eu/archive/2009/06/25/8-reasons-why-model-driven-development-is-dangerous, 30.07.

Cratts Hagiiia no penakiii 11.09.2012.

AKTYAJIbHI NTPOBJIEMW EKOHOMIKU, Ne4 (142), 2013

