MATEMATUYHI METOAMN, MOZEJ1l TA IHOOPMALLIVIHI TEXHOJ10T1i B EKOHOMILI 387

Magdalena Borys', Beata Panczyk®
IMPROVING DATA PROCESSING PERFORMANCE FOR WEB

APPLICATIONS USING OBJECT-RELATIONAL MAPPING

The paper presents the object-relational mapping (ORM) technology as one of solution for
increasing system flexibility and efficiency during the whole system life cycle. ORM frameworks not
only fill the gap between the object model and the relational database, but also facilitate the work
of web developers and decrease the cost of website maintenance. Increasing the efficiency of per-
Jforming tasks on data is shown using the simple web application. The results are presented as the
summary statements. The paper focuses on ORM technologies in the context of data performance
efficiency. It also presents other issues associated with Hibernate, LINQ and Doctrine frameworks.
Keywords: efficiency of data processing; object-relational mapping; web application.

Marnanena bopuc, beara ITanunk
HNIIBUINEHHA AKOCTI ObPOBKU JAHUX

JJIA BEB-TIPUKJIATIOK 3 BUKOPUCTAHHAM
OB’EKTHO-PEJIALINHOIO BIIOBPAXKEHHSA

Y cmammi onucano mexnoaoziro 06’ckmuo-peasuiiinozo eidoopaxcennss (OPB) sk oodun 3i
cnocobie nideuwenns enyuxocmi ma egpexmuenocmi éciei cucmemu. OPB ne miavku 3anosnroe
npobia mixc camum 06’°ckmom ma 6a3or0 OAHUX, & MAKOIC NPUCKOPIOE pobomy deseaonepie ma
3MeHuye eumpamu Ha niompumky eéeo-caiimie. Iliosuwenns epexmuenocmi euKonanus 3aday
npooeMOHCMPOBano Ha npukaadi npocmoi ée6-npuxiadxu. OPB-mexnoaozii ocobaueo axkmyao-
HI 6 Kommexcmi nideuwienns egexmuenocmi danux. Kopomrko onucano npunuunu pobomu
Hibernate, LINQ ma Doctrine.

Karouosi caosa: eghexmuenicmov 00pooKku oanux, 06’ ekmuo-peasyiiine 8ido6paxncents; ee6-npu-
Kaaoka.
Puc. 3. Taba. 6. Jlim. 10.

Marnanena bopuc, beara ITanunk
ITOBBIIIEHUE KAYECTBA OBPABOTKHW JAHHBIX
JJIA BEB-ITPUJIO2KEHUUA C UCITOJIb3OBAHUEM
OBBEKTHO-PEJALIMOHHOI'O OTOBPAXKEHU A
B cmamve onucana mexnoaozusn o6sexmuo-peasuuonnozo omoopaxcenus (OPO) kax odun

u3 cnoco6o6 nosvtuienus cubkocmu u 3gpdhexmusnocmu eceii cucmemot. OPO ne moavko 3anoa-
Hsiem npobea mexncoy camum 066eKmom u 6a3oli OaHHbBIX, HO MAKice ycKopsaem pabonty oegeno-
nepos u cHudcaem pacxoovt Ha nodoepicky eed-caiima. Ilosviumenue r¢pghexmusnocmu evinoane-
HUsL 300a% NOKA3AHO Ha npumepe npocmeiiuie2o eeb-npuiocenus. OPO-mexnoaoeuu ocobenno
aKmyaavHvl 8 KOHmMeKcme nogviuteHus dhpexmuenocmu oannovtx. Kpamxo onucanst npunyunot
pabomot Hibernate, LINQ u Doctrine.
Karouesvie caosa: sghgpexmusrnocms 06pabomku 0aHHbIX; 006EKMHO-PENSIUUOHHO20 0MOobpaice-
Hue; 6e0-NPUNONCCHU.

The basics of ORM. Almost every application must store data and almost all
large, contemporary applications are written in the object way. But data are relation-
al by nature and databases store them in a relational way. Object orientation for appli-
cations and relation of databases are natural. But it is much faster to write object sys-
tems and easier to design and divide tasks. Relational databases seem to be irreplace-
able. They are very effective. Introducing another model of storing data for now is not

! Lublin University of Technology, Poland.
Lublin University of Technology, Poland.

© Magdalena Borys, Beata Panczyk, 2015

388 MATEMATUYHI METOAMN, MOAEJI TA IH®OPMALINHI TEXHOJOrIi B EKOHOMILI

acceptable. However, it is possible to combine in one system both object orientation
of its structure and relational model of storing data (Barry, 2012).

Data are downloaded from a database many times, transferred to an application
and saved again after converting by a system. It is possible to do it using SQL and pro-
gramming languages (Java, C#, PHP etc.).

In an application usually there are defined classes whose objects are "boxes" to
store data for a short period of time as well as to pass on information between various
layers and objects of layers. Fields of objects are usually the same as the fields of tables
storing tuples describing these objects in a database (Hibernate, 2013).

Transparent persistence. Meaning of persistence is very important in application
development. Almost all applications require persistent data. It is very useful for a sys-
tem to preserve data entered by users.

Transparent persistence in ORM products is the ability to directly manipulate
data stored in a relational database using an object programming language. A data-
base sub-language uses the embedded SQL and for example ODBC (Open Database
Connectivity) or JDBC (Java Database Connectivity) calls the appropriate interface.

With transparent persistence, manipulation of persistent objects is performed
directly by the object programming language in the same way as in the memory, non-
persistent objects. This is achieved through the use of intelligent caching (Barry,
2012).

Caching data. Caching is used for storing data in the application to minimize
network traffic and disk access. Caching and transparent persistence is often set up as
a part of application work space. With cache, the application doesn't have to expli-
citly translate relational tuples. They move from disk storage automatically into pro-
gram memory. If client’s applications read the same data multiple times then caching
can help improve performance. The development cost of using RDBMS with objects
is reduced because object-relational mapping products take care of the object-to-
table and table-to-object conversion. Without an object-relational mapping product,
this conversion would need to be written in addition to application development.

Data in the cache must be synchronized with the data in the database managed
by DBMS server. A cache is used by an application that is separate from the underly-
ing DBMS server (Figure 1).

Application A | Application B

Cache
[

| Mapping |

[

| Server li

—

Figure 1. Using a cache with object relational mapping (Barry, 2012)

Figure 1 shows the situation when the second application B is accessing the same
DBMS server that is being used by an object application A. Application A uses a cache

AKTYAJIbHI NTPOBJIEMW EKOHOMIKN Ne2(164), 2015

MATEMATUYHI METOAMN, MOZEJ/1 TA IHOOPMALLIVIHI TEXHOJ10TIi B EKOHOMIL|I 389

with object-relational mapping. Application B can change the data used by
Application A and cache A would need to be synchronized to obtain the changed data.

Object to table mapping. Mapping objects to tables involves creating or updating
data stored in a relational database. Mapping involves (Barry, 2012):

- mapping objects to one or many tables — there are multiple ways to map objects
to tables — mapping inheritance issues and determining how many classes per table;

- making decisions related to potential for redundant data;

- designing for multi-table updates;

- mapping collection classes into tables — a collection is mapped to one or more
tables;

- mapping object types to database data types — in most cases this is straight-
forward mapping;

- mapping object relationships to keys or intersection tables — this is the many-
to-many relationship issue represented in a relational database as an intersection table.

Table to object mapping. Using the existing relational data with objects at the
application requires mapping tables to objects. Mapping involves (Barry, 2012):

- mapping relational data types into object types;

- mapping relational table definitions to object classes — the table definitions
map directly except for foreign keys, which are replaced by relationships;

- mapping inheritance based on a table or multiple tables;

- mapping tuple retrieval, keys and relational joins to relationships for object
navigation;

- mapping "intersection tables" to object relationships.

Figure 2 illustrates the table-object mapping.

| Application |
I
| Mapping |
[
r‘ Server |

TABLES OBJECTS

= ey

Figure 2. Table-object mapping (Barry, 2012)

ORM technologies. Depending on the web application development environ-
ment, 3 most popular ORM technologies can be identified: Hibernate for Java, LINQ
for ASP and Doctrine for PHP. In this section they are briefly described.

ACTUAL PROBLEMS OF ECONOMICS #2(164), 2015

390 MATEMATUYHI METOAMN, MOAEJI TA IH®OPMALINHI TEXHOJOrIi B EKOHOMILI

Hibernate. Hibernate is an open source ORM mapping library for the Java lan-
guage, that provides persistent classes and logic without caring how to handle data
(Hibernate, 2013a; Hibernate, 2013b). Persistence in Java (Hibernate) is storing data
in a relational database using SQL.

Hibernate let us develop persistent classes following object-oriented idiom (asso-
ciation, inheritance, polymorphism, composition, collections). Hibernate allows
expressing queries in native SQL or in its own portable SQL extension (HQL) or with
an object-oriented criteria and example API. This can reduce the development time.
Programmer doesn't have to handle the data manually in SQL and JDBC.

The most important Hibernate's feature is mapping from Java classes to database
tables and from Java data types to SQL data types.

Hibernate allows creating high-performance database applications with Java
much faster and easier. Transparent persistence for Plain Old Java Objects (POJOs)
allow building a simple POJO, then create XML mapping file that will describe the
relationship between the database and the class attributes and at the end call
Hibernate API's to specify operations (Figure 3). A programmer may not be aware
when and which queries are performed to a database (Hibernate, 2013a).

Application

Persistent Objects

HIBERNATE XML
PROPERTIES MAPPING

v
DB Server

Figure 3. Hibernate performance patten (Hibernate, 2013a)

Hibernate can be used as in standalone Java applications or as in Java web appli-
cations (Rychlicki-Kicior, 2010; Panczyk, 2010).

Hibernate is an ORM tool that automatically maps object to the relational data-
base and helps developers quickly write database access program and become pro-
ductive. Java developers mostly use Hibernate for developing enterprise web applica-
tions. Hibernate is better than plain JDBC: it is possible to use Hibernate which gene-
rates the SQL on the fly and then automatically executes the necessary SQL state-
ments. This saves a lot of development and debugging time in comparison with writ-
ing JDBC statement, setting the parameters, executing query and processing the
result by hand. Mapping the domain object with relational database let’s concentrate
on a business logic rather than managing data in a database. It’s database indepen-
dent. There are also many caching frameworks that work with Hibernate. It is pos-
sible to use any of them to improve the performance of an application.

The problem with Hibernate is that a lot of effort is required to learn it.
Sometimes debugging and performance tuning becomes difficult. Hibernate is slo-

AKTYAJIbHI NTPOBJIEMW EKOHOMIKN Ne2(164), 2015

MATEMATUYHI METOAMN, MOZEJ1 TA IHOOPMALIIVIHI TEXHOJ10TIi B EKOHOMILII 391

wer than pure JDBC as it is generating lots of SQL statements in runtime. It advisable
to use pure JDBC for batch processing.

LINQ (Language Integrated Query) is a Microsoft programming model and
methodology that gives a formal query capabilities into Microsoft .NET-based pro-
gramming languages. It is a set of extensions to the .Net Framework 3.5 and its mana-
ged languages that set the query as an object and define a common syntax and a pro-
gramming model to query different types of data using a common language.

Relational operators (Select, Project, Join, Group, Partition, Set etc.), are
implemented in LINQ and the C# and VB compilers in the .Net framework 3.5,
which support the LINQ syntax make it possible to work with a configured data store
without resorting to ADO.NET (LINQ, 2013). LINQ may be used to access all types
of data (database, text files and XML), whereas embedded SQL is limited to addres-
sing only databases that can handle SQL queries.

The LINQ advantages are:
quick turnaround for development;

- queries can be dynamic;
tables are automatically created into class, columns into properties;
relationship are automatically appeared to classes;

- data is easy to setup and use.

But LINQ sends the entire query to the DB hence it takes much network traffic
but the stored procedures sends only argument and the stored procedure name — it
will become bad if queries are very complex. Performance is degraded if the LINQ
query is not correct and to make changes in data access, it is necessary to recompile
and redeploy the whole assembly.

Doctrine is ORM that provides transparent persistence for PHP objects. It uses
the Data Mapper pattern at the heart of this project, aiming for a complete separation
of the domain/business logic from the persistence in a relational database manage-
ment system. The benefit of Doctrine for programmers is is ability to focus solely on
the object-oriented business logic and persistence is only as a secondary task. This
does not mean persistence is not important to Doctrine, however there are consider-
able benefits for object-oriented programming if persistence and entities are kept per-
fectly separated (Doctrine, 2013).

Actually, Doctrine is quite simple in its fundamentals. And it is a very good
choice for small, medium and even some large applications. Doctrine is not the
answer for everything and sometimes it is a little problematic. However, for typical
tasks it is extremely useful.

The case study of ORM implementation was build using one of the most popu-
lar PHP open source framework Symfony (Symfony, 2013). Symfony version 2.0.16
is integrated with Doctrine 2 ORM. For the purpose of the paper the sample database
"World database" structure and data was used (MySql, 2013).

The case study is presented to show how integrating ORM framework into web
apphcatlon development can facilitate the work of web developers providing:

automatic schema generation;

- mapping between XML and objects;

- criteria application programming interface (API);

- security.

ACTUAL PROBLEMS OF ECONOMICS #2(164), 2015

392 MATEMATUYHI METOAMN, MOAEJI TA IH@OPMALINHI TEXHOJOrIi B EKOHOMILI

The instructions presented in the Listing 1 create XML mapping metadata based
on existing database structure, import the mapping metadata in form of annotations
and finally generate entities. Those 3 commands build date schema that allows easy
and flexible data manipulation.

Listing 1. Instructions for generated entities from database structure
php app/console doctrine:mapping:convert xml
/src/Pl/TestBundle/Resources/config/doctrine/metadata/orm --from-database —force
php app/console doctrine:mapping:import PITestBundle annotation
php app/console doctrine:generate:entities AcmeBlogBundle

The example of a generated entity is presented in the Listing 2. The entity called
City contains two variables id and name. The attributes of variables such as type,
length, strategy of generation are established automatically based on data structure in
a database. The annotations presented in the listing show the relationship between
entity elements and existing data structure. For example the code
@ORM\Table(name="city") expresses that the equivalent of an entity in the database
is table City. Moreover, the setter and getter methods to access private entity variables
are created automatically providing easy access to entity usage.

Listing 2. The example of Doctrine entity
Namespace Acme\DemoBundle\Entity;
use Doctrine\ORM\Mapping as ORM;

/**

* Acme\DemoBundle\Entity\City
*

* @ORM\Table(name="city")
* @ORM\Entity

*/

class City

{

/**

* @var integer $id
k

* @ORM\Column(name="ID", type="integer", nullable=false)
* @ORM\Id

* @ORM\GeneratedValue(strategy="IDENTITY")

*/

private $id;

[E*®

* @var string $name
k

* @ORM\Column(name="Name", type="string", length=35, nullable=false)
*/
private $name;

/**

* Set name
*

AKTYAJIbHI NTPOBJIEMW EKOHOMIKN Ne2(164), 2015

MATEMATUYHI METOAMN, MOZEJ1l TA IHOOPMALLIVIHI TEXHOJ10TIi B EKOHOMILI 393

Continuation of Listing 2

* @param string $name
*/
public function setName($name)

{

$this->name = $name;

}

[E*®

* Get name
*

* @return string
*/
public function getName()

{

return $this->name;

}

}

The sample of using Doctrine entity in Symfony framework controller, responsi-
ble for an application logic, is presented in the Listings 3 and 4. As shown in the Listing
3 ORM Doctrine allows for using Doctrine Query Language similar to SQL query
statements to retrieve the data objects. The Listing 4 presents the implementation of
Doctrine repository methods for the similar query as presented in the Listing 3.

Listing 3. The example of usage of Doctrine entity in Symfony controller
public function index2Action() {
$em = $this->getDoctrine()->getEntityManager();
$query = $em->createQuery('SELECT ¢ FROM PITestBundle:City ¢
WHERE c.id > :id ORDER BY c.id ASC')
->setParameter('id', '5')
//->1imit(1000);

$cities = $query->getResult();

if (1$cities) {
throw $this->createNotFoundException('No city found');
}

return array('cities' => $cities);

}

In both Listings 3 and 4 the examples the API criteria such as setParameter, limit
or orderBy are used. Additionally, using Doctrine repository and all sorts of helpful
methods like presented in the Listing 5 makes fetching an object or objects from the
database even easier.

Besides the presented advantages of helping web developers in their work, ORM
increases also the efficiency of web application performance and maintenance. ORM
provides the mechanism for caching objects, queries and metadata and allows for lazy
loading of data and thus better use of resources and more stable performance of appli-
cation.

ACTUAL PROBLEMS OF ECONOMICS #2(164), 2015

394 MATEMATUYHI METOAMN, MOAEJI TA IH@OPMALINHI TEXHOOrIi B EKOHOMILI

Listing 4. The example of usage of Doctrine entity in Symfony controller

public function index3Action() {

$repository = $this->getDoctrine()->getRepository('PlTestBundle:City');
$query = $repository->createQueryBuilder('c')

->where('c.id > :id")

->setParameter('id', '5")

->orderBy('c.id', 'ASC")

->getQuery();

$cities = $query->getResult();

if (!$cities) {
throw $this->createNotFoundException('No city found');
}

return array('cities' => $cities);

}

Listing 5. The example of usage of Doctrine entity in Symfony controller

public function index4Action() {
$repository = $this->getDoctrine()->getRepository('AcmeDemoBundle:City");
$cities = $repository->findAll(array('id' => 'ASC"));

if (!$cities) {
throw $this->createNotFoundException('No city found');
}

return array('cities' => $cities);

}

While it is not always appropriate to cache objects, it is highly recommended in

a production environment to cache the transformation of a Doctrine Query Language
query to its SQL counterpart and thus to improve Doctrine performance and appli-
cation performance. The second recommendation is the metadata cache, that avoids
having to parse class metadata coming from annotations or XML in each request.

The comparison of number of queries and the time of execution from Symfony

Profiler is presented in Table 1 for each of codes presented in the Listings 3—5 wi-
thout caching. The results shows that all ORM fetching object methods have similar
query execution time and none of them slow the performance of web application.

Table 1. Comparison of ORM code results

Code example Appl{catu.)n Select. query Number of queries
execution time execution time
Listing 3 1102 ms 13.98 ms 2
Listing 4 1128 ms 14.14 ms 2
Listing 5 1083 ms 12.58 ms 2

Conclusion. Object-relational mapping reduces programming code and improve

application performance in comparison with classical SQL interface usage. The per-
formance cost of using RDBMSs with objects can be significantly reduced. Most

AKTYAJIbHI NTPOBJIEMW EKOHOMIKN Ne2(164), 2015

MATEMATUYHI METOAMN, MOZEJ/1 TA IHOOPMALLIVIHI TEXHOJ10TIi B EKOHOMILI 395

ORM mapping products provide transparent persistence with object programming
languages. Moreover, it is easier for programmers to work with objects than to create
SQL queries.

References:

Barry, D.K. (2013). Object-relational-mapping and Transparent Persistence, June 17, 2013 //
www.service-architecture.com.

Framework Symfony, July 23, 2013 // symfony.com.

Getting started xml edition, June 17, 2013 // Doctrine tutorial // doctrine-orm.readthedocs.org.

Hibernate Homepage, May 12, 2012 // www.hibernate.org.

Hibernate tutorial, June 17, 2012 // www.hibernatetutorial.com.

lyer, L.S., Gupta, B., Johri, N. (2005). Performance, scalability and reliability issues in web applica-
tions. Industrial Management & Data Systems, 105(5): 561—576.

LINQ tutorial, June 18, 2013 // www.tutorialspoint.com.

MySQL Documentation (2013). Other MySQL Documentation, June 26, 2013 // dev.mysql.com.

Panczyk, B. (2010). Object-Relational Mapping for Web Applications. In: Advanced object-oriented
technology. Ed. Marek Milosz. PIPS Polish Information Processing Society, Lublin.

Rychlicki-Kicior, K. (2010). Java EE 6. Programming web applications. Helion, Poland (in Polish).

Crattd Hagiuia no penakiii 30.11.2014.

ACTUAL PROBLEMS OF ECONOMICS #2(164), 2015

