В. В. Малишев, Д. Б. Шахнін, А. І. Габ, О. О. Риженко, З. Устундаг*

СПОСОБИ КЕРУВАННЯ СТРУКТУРОЮ ПОКРИТТІВ МОЛІБДЕНУ І ВОЛЬФРАМУ В ВОЛЬФРАМАТНО-МОЛІБДАТНИХ РОЗПЛАВАХ

Експериментально підібрано способи керування (склад атмосфери над електролітичною ванною, застосування нестаціонарних струмових режимів, умови і параметри електролізу) структурою молібденових і вольфрамових покривів у вольфраматно-молібдатних розплавах. Застосування нестаціонарних струмових режимів для нанесення покриттів молібдену і вольфраму керованої структури дозволяє цілеспрямовано підвищувати поверхневу твердість, зносостійкість, абразивну та корозійну стійкість конструкційних матеріалів.

Ключові слова:молібден, вольфрам, покрив, структура, атмосфера, режим та умови електролізу.

Раніше нами встановлено, що молібденові і вольфрамові осади, отримані електролізом вольфраматно-молібдатних розплавів, мають крупнокристалічну структуру [1, 2]. Внаслідок цього, вже за товщини 100-200 мкм осади стають шорсткими. В літературі відомі способи керування структурою покривів у процесі ведення електролізу водних або розплавлених електролітів [3—5]. Аналіз літературних даних вказує, що найбільш ефективними для йонних розплавів є зміна складу атмосфери над електролітичною ванною, застосування нестаціонарних струмових режимів ведення електролізу, зміна умов і параметрів електролізу (матеріал катода, склад електроліту, температура електролізу, катодна густина тривалість електролізу, реверсний струму, режим електроосадження).

Метою роботи є експериментальне підтвердження можливості та визначення способів керування структурою покривів молібдену і вольфраму у вольфраматно-молібдатних розплавах.

Методика дослідження і матеріали

Експерименти проводили в герметичному металевому електролізері. Електролітами служили розплавлені суміші $Na_2WO_4 - 3\%$ (мол.) MoO_3 , $Na_2WO_4 - 5\%$ (мол.) WO_3 , та $Na_2WO_4 - Li_2WO_4 - 10\%$ (мол.) WO_3 . Осадження досліджували металографічно. Розміри зерен вимірювали за допомогою мікроскопів MIM — 8M і Ніtachi 800 за шліфом поперечного перерізу на віддалі 40—50 мкм від основи. Мікротвердість вимірювали також на шліфі поперечного перерізу приладом ПМТ-3 при навантаженні

^{*} В. В. Малишев — доктор технічних наук, професор, директор Інженерно-технологічного інституту Університету "Україна", Київ; Д. Б. Шахнін — кандидат хімічних наук, доцент цієї ж установи; А. І. Габ — кандидат хімічних наук, доцент цієї ж установи; О. О. Риженко — студент цієї ж установи; З. Устундаг — PhD, доцент Університету Думлупінар.

[©] В. В. Малишев, Д. Б. Шахнін, А. І. Габ, О. О. Риженко, З. Устундаг, 2018 ISSN 0136-1732. Адгезия расплавов и пайка материалов, 2018. Вып. 51 81

на індентор 1 Н. Текстуру осадів вивчали за допомогою рентгенівської установки ДРОН-4 і дифрактометра Rigacu rA. Ограновування поверхні осадів визначали оптико-гоніометричним методом.

Результатидослідження та їх обговорення.

Зміна складу атмосфери над електролітичною ванною

Заміна повітряної атмосфери на інертну (аргон) практично не впливає на структуру і розміри зерен осадів. В обох випадках осади не текстуровані або мають дуже слабку текстуру <111>. Єдиною відмінністю є гладші грані зерен поверхні у ванні з атмосферою інертного газу. Цю схожість структур можна пояснити так: у рівноважному з металевим молібденом (вольфрамом) розплаві тугоплавкий метал присутній у вигляді кисневмісних аніонів з найвищим ступенем окиснення і розчинність кисню у вольфраматно-молібдатних розплавах мала. Тому заміна повітря на аргон не привносить в розплав нових компонентів і практично не впливає на вихід за струмом.

Введення вуглекислого газу в атмосферу над ванною призводить до здрібнення зерен молібденових і вольфрамових осадів (табл. 1). Зерна в них стають значно дрібнішими (рис. 1). Підвищення парціального тиску CO₂ при електролізі розплаву Na₂WO₄—Li₂WO₄ — 10% (мол.) WO₃ за 1023 К призводить до переродження у вольфрамові порошкові осади та співосадження порошків вуглецю на катоді.

Таблиця 1. Вплив умов електролізу на структуру осадів молібдену і вольфраму (товщина осадів 100—150 мкм)

Таblе	1. Influence	of electrolysis	conditions	on the	structure	of
molybdenum	1 and tungster	n deposits (100–	–150 micron	sthick)		

<i>Т</i> , К	i_k , A/cm ²	СО2, % (об.)	Текстура	Розмір зерна, мкм	Характеристика осаду		
Електроліт Na ₂ WO ₄ — 3% (моль) MoO ₃							
1123	0,05	0	111	—	Дендрити на ребрах		
"	_"_	25	Немає		Дендритнізростки		
"	_"_	50	Немає		Порошок Мо і С		
1173	_"_	0	111	14,3	Відсутність дендритів		
"	_"_	25	_"_	12,6	Дендритнізростки		
"	_"_	50	Немає	10,9	Порошок Мо і С		
Електроліт Na ₂ WO ₄ — 5% (моль) WO ₃							
1173	0,10	0	111	14,7	Дендритнізростки		
"	_"_	25	Немає	12,3	Шишкуваті дендрити		
"	_"_	50	100	10,1	Рівномірний осад		
"	_"_	100	Немає	5,2			
Електроліт LiNaWO ₄ — 10% (моль) WO ₃							
1073	0,10	0	111	17,3	Дендрити на ребрах		
"	_"_	25	Немає	13,6	Дендритнізростки		
"	_"_	50	211	9,1	Рівномірний осад		
"	_"_	100	Немає	2,5			
1173	0,05	0	Немає	13,3	Невеликі дендрити		
"	_"_	25	100	9,6	Рівномірний осад		
"	_"_	50	100	7,8	_"_		
"	_"_	100	100	1,5	_"_		

82 ISSN 0136-1732. Адгезия расплавов и пайка материалов, 2018. Вып. 51

V(CO₂), % (об.)

Рис. 1. Залежності розміру зерна осадів молібдену і вольфраму від вмісту CO₂ над розплавом: 1 — Li, Na|WO₄ — 10% (мол.) WO₃, T = 1173 K, i = 0.05 A/cm²; 2 — Li, Na|WO₄ — 10% (мол.) WO₃, T = 1173 K, i = 0.10 A/cm²; 3 —Na₂WO₄ — 5% (мол.) WO₃, T = 1173 K, i = 0.10 A/cm²; 4 — Na₂WO₄ — 3% (мол.) MoO₃, T = 1173 K, i = 0.05 A/cm²

Fig. 1. Dependence of grain size of molybdenum and tungsten deposits on the content of CO₂ above the melt: 1 — Li, Na|WO₄ — 10% (mol.) WO₃, T = 1173 K, i = 0,05 A/cm²; 2 — Li, Na|WO₄ — 10% (mol.) WO₃, T = 1173 K, i = 0,10 A/cm²; 3 — Na₂WO₄ — 5% (mol.) WO₃, T = 1173 K, i = 0,10 A/cm²; 4 — Na₂WO₄ — 3% (mol.) MoO₃, T = 1173 K, i = 0,05 A/cm²

Підвищення температури знижує вплив CO₂ і за 1173 К суцільні осади молібдену і вольфраму отримано за атмосфери над ванною, що містила до 100% (об.) CO₂. Проте за цієї температури з розплаву Na₂WO₄ — WO₃ вуглець на катоді (до 1% (мас.)) виділяється за атмосфери, що містить 25% (об.) вуглекислого газу. Ймовірно, це зумовлено більшою "основністю" розплаву, який містить вольфрамат натрію. Активність йонів кисню в ньому за однієї й тієї ж концентрації WO₃ вища, ніж у розплаві Na₂WO₄ — Li₂WO₄.

Оскільки в реакції відновлення дивольфрамату йона $W_2O_7^{2-} + 12e \rightarrow$ $W + 7O^{2-}$ на один утворений іон O^{2-} витрачається 12/7 електрона, а в реакції відновлення вуглекислого газу $CO_2 + 4e \rightarrow C + 2O^{2-} - 2$ електрони, то підвищення активності йонів О²⁻ в розплаві викликає менший зсув потенціалу виділення вуглецю в негативну область, ніж потенціалу виділення вольфраму. Це, у свою чергу, сприяє осадженню вуглецю на катоді. Співосаджуваний вуглець виступає як пасиватор, зерен блокуючи ріст i здрібнення осаду. Суцільні осади молібдену (вольфраму) мають стовпчасту структуру (навіть за 60—70% (об.) СО₂ над ванною). Мікротвердість осадів зростає при введенні

ISSN 0136-1732. Адгезия расплавов и пайка материалов, 2018. Вып. 51 83

Рис. 2. Залежності мікротвердості осадів молібдену і вольфраму від вмісту CO_2 над розплавами Na_2WO_4 — 3% (мол.) MoO_3 (1) та Na_2WO_4 — 5% (мол.) WO_3 (2). T = 1173 K, i = 0,05 A/см²

Fig. 2. Dependence of the microhardness of molybdenum and tungsten deposits on the content of CO₂ above the melt Na₂WO₄ — 3% (mol.) MoO₃ (1) and Na₂WO₄ — 5% (mol.) WO₃ (2). T = 1173 K; i = 0.05 A/cm²

вуглекислого газу в атмосферу над ванною (рис. 2).

У хлоридних розплавах пасиватором є не лише вуглець, але й O^{2-} , утворюваний за відновлення CO_2 . Він взаємодіє в розплаві з йонами важкоплавкого металу з утворенням оксикатіонів, які, відновлюючись на катоді до нижчих оксидів, разом з вуглецем включаються в катодний осад.

Введення CO₂ в атмосферу над вольфраматно-молібдатними ваннами змінює структуру поверхні та текстуру осадів. Наприклад, за 1123 К (особливо це помітно за 1273 К) і 10...40% (об.) CO₂ зерна в осадах набувають переважно орієнтації з віссю <100>, перпендикулярною основі. Здрібнення структури осадів під дією атмосфери вуглекислого газу дає змогу отримати осади молібдену або вольфраму завтовшки близько 1—1,5 мм.

Застосування нестаціонарних струмових режимів

Окрім створення атмосфери вуглекислого газу над електролітичною ванною, одним із способів зменшення розмірів зерен є накладення імпульсів струму на початку електролізу або протягом його здійснення [3, 5]. Електроосадження здійснювали за 1173 К з розплавів Na_2WO_4 — 3% (мол.) MoO₃ і Na_2WO_4 — 5% (мол.) WO₃. Як основу застосовували нікелеві пластини. Імпульси струму задавали спеціальним генератором прямокутних імпульсів. Катодна густина постійного струму в усіх експериментах становила 7,5·10⁻² A/см².

84 ISSN 0136-1732. Адгезия расплавов и пайка материалов, 2018. Вып. 51

Якщо електроліз починати з катодного імпульсу, в осаді утворюються дрібніші зерна. Наприклад, при амплітуді імпульсу 30 А/см² і його тривалості 40—50 мс їх розмір зменшується з 10—14 мкм до 3—5 мкм. Зменшенням розміру зерен пояснюється незначне збільшення мікротвердості осаду: з 22,0 до 28,0 МПа для молібдену і з 38,0 до 44,0 МПа для вольфраму.

Рентгенівські дослідження показали, що початкові імпульси до 30 A/cm^2 не впливають на орієнтацію осаду. Незалежно від початкового імпульсу молібденові і вольфрамові осади мали текстуру <110>. При накладенні імпульсів струму до 30 A/cm^2 під час електролізу зростає лише дефектність шарів, обумовлена утворенням нових зародків металу на кожному зерні осаду. При накладенні імпульсів струму з амплітудою понад 50 A/cm^2 осади перероджуються в губчасті і слабко зчеплені з основою. Це характерно для умов практично повного збіднення прикатодного шару електроліту димолібдат- і дивольфрамат-йонами. Тип осаду можна пояснити вторинним відновленням йонів $M_2O_7^{2-}$ атомами натрію, що виділяються на катоді за первинною реакцією та дифундують від нього.

Вплив умов і параметрів електролізу на склад і структуру покривів

Для прикладної електрохімії зручно користуватися дешевими неагресивними негігроскопічними розчинниками, якими є еквімольні суміші КСІ — NaC1 і NaCl — Na₃AlF₆. Перевага цих ванн — стійкість на повітрі, сумісність оксидом алюмінію 3 (алунд, корунд) i конструкційними матеріалами електролізера, що дає змогу працювати у відкритих електролізерах з розчинним вольфрамовим (молібденовим) анодом а також порівняльна екологічна чистота. Завдяки зв'язуванню важко-плавкого металу в міцні комплекси він зазвичай осаджується на графіт, мідь, нікель. На сталевих зразках з цих розплавів осідають незчеплені покриви.

Вольфрамати і молібдати лужних і лужно-земельних металів – типові йонні рідини: термічно стійкі, мають порівняно невисокі температури плавлення (наприклад, для найвикористовуваниших у високотемпературній електрохімії вольфрамату і молібдату натрію вони становлять 971 і 960 К) і в'язкість (8,36 і 5,35 мН/см² за 1000 К), досить високу густину (3,61—3,85 і 2,57—2,81 г/см³), питому електропровідність (0,84 і 0,71 Ом м⁻¹ см⁻¹ за 1073 К) і потенціалів розкладу (1,53 і 1,39 В за 1000 К відповідно) [6, 7]. Ці властивості згаданих електролітів важливі для електроосадження тугоплавких металів і їх сплавів. У роботі [5] показана можливість електровиділення вольфраму з вольфраматних боро-, фосфоро- і сірковмісних розплавів. З вивчених нами акцепторів кисневих йонів найтехнологічнішими є оксид бору, метафосфат і піросульфат натрію. Ці розплави мають такі самі переваги, що і галогенідно-оксидні. Окрім цього, в них можливе нанесення покривів на різні сталі. Також показано, що в галогенідно-оксидних KCl—NaCl—Na₂WO₄—NaPO₃, NaCl—Na₃AlF₆—Na₂WO₄—(WO₃) та оксидних розплавах Na₂WO₄----B2O3, Na2WO4—NaPO3 і Na2WO4—Na2S2O7 можливе здійснення багато електронних рівноваг і процесів, електровиділення вольфраму з його

димерних форм. Такі самі закономірності повною мірою спостерігаються й аналогічних молібденовмісних розплавів і електровиділення молібдену. Особливо слід відмітити, що за певної основності розплаву існує електродна рівновага за участю шести електронів між металевим вольфрамом (молібденом) і його димерними формами. Отримані нами раніше результати стали основою для розробки процесів електроосадження вольфрамових (молібденових) покривів. Отже, цікаво було порівняти за осадженням покривів вибрані нами галогенідно-оксидні та оксидні розплави.

Умови осадження покривів на різноманітні основи

Умовою гарного зчеплення покриву з основою є більш позитивний потенціал корозії порівняно з потенціалом осадження. Тому для оцінки можливості нанесення вольфрамових покривів на різні основи було виміряно стаціонарні потенціали міді, нікелю, сталі 3, неіржавної сталі, титану в обраних електролітах відносно напівелементів KCl—NaCl — 2,5% (мол.) PbCl₂ | Pb, NaCl — 5% (мол.) Na₂WO₄ | O₂, Pt i Na₂WO₄ — 20% (мол.) WO₃ | O₂, Pt (табл. 2).

Потенціал осадження вольфраму значно електронегативніший за потенціали корозії міді та нікелю в розплавах KCl—NaCl—Na₂WO₄— NaPO₃ і NaCl—Na₃AlF₆—Na₂WO₄, що зумовлює можливість успішного покривання. На сталях з цих розплавів осаджується незчеплений порошок. У розплавах Na₂WO₄—B₂O₃, Na₂WO₄—NaPO₃ і Na₂WO₄—Na₂S₂O₇ стаціонарні потенціали всіх електродів значно електропозитивніші за потенціал осадження вольфраму і на них утворюється зчеплений покрив.

Таблиця 2. Потенціали вільної корозії E_{κ} міді, нікелю, сталі 3, неіржавної сталі та осадження вольфраму E_0 в галогенідно-оксидних і оксидних розплавах

T a b 1 e 2. Potentials of free corrosion E_k of copper, nickel, steel 3, stainless steel, and deposition of tungsten E_0 in halide-oxide and oxide melts

Склад розплаву осадження, % (моль)	E_{κ}, \mathbf{B}				F B
	Cu	Ni	Ст. 3	30ХГА	L_0, D
KCl—NaCl— 2,5Na ₂ WO ₄ — 0,35NaPO ₃	-0,13—0,15	-0,25—0.27	-0,49—0,51	-0,55—0,57	-0,31—0,42
NaCl— Na ₃ AlF ₆ — 10,0Na ₂ WO ₄	-0,49—0,54	-0,51—0,55	-0,78—0,81	-0,75—0,79	-0,65
$Na_2WO_4 - 5,0B_2O_3$	-1,08—1,12	-1,17—1,22	-1,31—1,35	-1,30—1,31	-1,50
$\begin{array}{c} \mathrm{K_2WO_4}\\ \mathrm{Na_2WO_4}\\ \mathrm{5,0B_2O_3} \end{array}$	-0,99—1,03	-1,07—1,10	-1,24—1,26	-1,23—1,26	-1,40—1,65
Na_2WO_4 — 5,0NaPO ₃	-0,85—0,87	-0,89—0,91	-1,07—1,11	-1,02—1,05	-1,20—1,35
$\begin{array}{l} Na_2WO_4 - \\ 7,5Na_2S_2O_7 \end{array}$	-1,09—1,11	-1,09—1,17	-1,30—1,34	-1,29—1,33	-1,50—1,75

86 ISSN 0136-1732. Адгезия расплавов и пайка материалов, 2018. Вып. 51

Ці закономірності є характерними для аналогічних молібденовмісних розплавів і електроосадження молібдену.

Стаціонарні потенціали титану у всіх розплавах не встановлюються через інтенсивне розчинення кисню в поверхневому шарі електрода. Тому перед осадженням вольфраму поверхню титану міднили або нікелювали. Вольфрамові покриви електроосаджували з галогенідно-оксидних KCl—NaCl—Na₂WO₄—NaPO₃, NaCl—Na₃AlF₆—Na₂WO₄—(WO₃) і оксидних Na₂WO₄—B₂O₃, Na₂WO₄—NaPO₃ та Na₂WO₄—Na₂S₂O₇ електролітів. Нами вивчено вплив зміни концентрацій вольфрамату, акцепторів кисневих йонів, температури, катодної густини струму, тривалості електролізу на склад і структуру катодних осадів та підібрано оптимальні параметри реверсивного режиму осадження. Електрод порівняння — KCl—NaCl—2,5% (моль). PbCl₂|Pb і T = 1023 K в галогенідно-оксидних розплавах; Na₂WO₄—0,2WO₃|O₂, Pt i T = 1173 K — в оксидних розплавах.

Вплив концентрацій вольфрамату і акцепторів кисневих йонів

В розплаві KCl-NaCl-Na₂WO₄-NaPO₃ Вольфрамові покриви виконується співвідношення 0,02 < [PO₃⁻]/ утворюються, якщо $[WO_4^{2^-}] < 0,18$. За концентрації Na₂WO₄ менше 1% (моль) у незчепленому осаді виявлено домішки фосфідів, за концентрацій понад 10% (моль) оксиди вольфраму. За концентрацій метафосфату, що перевищують $[PO_3^{-}]/[WO_4^{2-}]$ ≥ 0,18, виділяються вольфрам та його фосфіди і зчепленого покриву не утворюється. Вольфрамові покриви в розплаві NaCl—Na₃AlF₆—Na₂WO₄ утворюються за концентрації вольфрамату натрію 1—15% (моль). За великих концентрацій починається осадження діоксиду вольфраму і вольфрамових бронз. З електроліту Na₂WO₄—B₂O₃ вольфрам осаджується, якщо концентрація оксиду бору не перевищує 10% (моль) При більшій його концентрації на дифрактограмах виявлено оксиди вольфраму і бронзи. Вольфрамові покриви в розплаві Na₂WO₄— NaPO₃ утворюються за концентрації метафосфату 0,5—15,0% (моль). За великих концентрацій поряд з вольфрамом осаджуються його бронзи і осад швидко переростає в дендрити. З електроліту Na₂WO₄-Na₂S₂O₇ вольфрам осаджується, якщо концентрація Na₂S₂O₇ становить 2.5...12,5 моль.%. За великих концентрацій поряд з вольфрамом осаджуються його діоксид і сульфіди.

Вплив температури електролізу

Суцільні вольфрамові покриви з галогенідно-оксидних електролітів отримані за 973—1073 К і густини струму до 0,25 А/см². За вищої температури розплав стає термічно нестійким і більш легким. За температури нижче 973 К можна отримати шари вольфраму до 5 мкм і осади швидко перероджуються в порошок. За густини струму понад 0,25 А/см² утворюються дисперсні вольфрамові порошки.

Суцільні вольфрамові покриви з оксидних електролітів отримано за 1023—1123 К і густини струму до 0,40 А/см². За температури нижче 1023 К можна одержати шари вольфраму до 15—20 мкм. За густини струму понад 0,40 А/см² утворюються високодисперсні порошкові осади вольфраму з питомою поверхнею до 40—50 м²/г.

Вплив катодної густини струму і тривалості електролізу

Вивчення впливу катодної густини струму і тривалості електролізу, підбір параметрів реверсного режиму осадження здійснювали для електролітів KCl—NaCl—2,5% (моль) Na₂WO₄—0,35% (моль) NaPO₃, NaCl—Na₃AlF₆—7,5% (моль) Na₂WO₄, Na₂WO₄ — 5% (моль) NaPO₃ i Na₂WO₄ — 5% (моль) Na₂S₂O₇. Зчеплені суцільні безпористі покриви з цих електролітів отримано за 923—1173 К і густини струму 0,01—0,15 і 0,03—0,25 А/см² для галогенідно-оксидних і оксидних систем відповідно. Розмір кристалітів у осаді зменшується із збільшенням густини струму. Проте за густини струму понад 0,25 А/см² спостерігається значне зерен, що супроводжується збільшенням амплітуди зростання шорсткості. Це призводить до переродження осаду в дендрити. За густини струму менше 0,025 A/см² швидкість корозії основи перевищує швидкість осадження вольфраму і зчеплений покрив не утворюється. Швидкість осадження вольфраму в досліджуваному інтервалі густин струму становить 5—15 мкм/год для галогенідно-оксидних електролітів і 20—45 мкм/год для оксидних, вихід за струмом вольфраму у вигляді покриву становить відповідно до 60 і 95% (рис. 3). Залежності товщини покриву і виходу за струмом вольфраму у вигляді покриву наведено на рис. 4. Із зростанням тривалості електролізу вихід за струмом зменшується.

Перелічені особливості впливу концентрацій молібдату і акцепторів кисневих йонів, температури електролізу, катодної густини струму і тривалості осадження повною мірою відносяться і до електроосадження молібденових покривів.

Рис. 3. Залежності швидкості осадження вольфрамового покриву (1, 2) і його виходу за струмом (3, 4) на зразках міді від густини струму: 1, 3 — галогенідно-оксидний електроліт NaCl—Na₃AlF₆ — 10% (мол.) Na₂WO₄; 2, 4 — оксидний електроліт Na₂WO₄ — 5% (мол.) B₂O₃

Fig. 3. Dependence of the deposition rate of the tungsten coating (1, 2) and its current yield (3, 4) onto copper samples from the current density: 1, 3 — halide-oxide electrolyte NaCl—Na₃AlF₆ — 10% (mol.) Na₂WO₄; 2, 4 — oxide electrolyte Na₂WO₄ — 5% (mol.) B₂O₃

88 ISSN 0136-1732. Адгезия расплавов и пайка материалов, 2018. Вып. 51

Рис. 4. Залежності товщини вольфрамового покриву (1—4) і його виходу за струмом (5, 6) на нікелевих зразках від тривалості електролізу за густини струму 0,025 (1), 0,075 (2), 0,15 A/cm^2 (3—6) для галогенідно-оксидного електроліту (1, 2, 3, 5) NaCl—KCl — 2,5% (мол.) Na₂WO₄ — 0,35% (мол.) NaPO₃ та оксидного електроліту (4, 6) Na₂WO₄ — 7,5% (мол.) Na₂S₂O₇

Fig. 4. Dependence of the thickness of the tungsten coating (1—4) and its current yield (5, 6) onto nickel samples from the duration of electrolysis: 1 — 0,025 A/cm², 2 — 0,075 A/cm², (3—6) — 0,15 A/cm²; 1, 2, 3, 5 — halide-oxide electrolyte NaCl—KCl — 2,5% (mol.) Na₂WO₄ — 0,35% (mol.) NaPO₃, 4, 6 — oxide electrolyte Na₂WO₄ — 7,5% (mol.) Na₂S₂O₇

З галогенідно-оксидного електроліту нами отримано зчеплені суцільні вольфрамові та молібденові покриви на нікелі, міді, графіті, вольфрамі, молібдені. В оксидних розплавах до цих основ додаються сталі 3, 45, 15Х, 40Х, 30ХГА, інструментальні сталі У7, У10, Р6М5, тверді сплави ВК6, ВК20, міднений та нікельований титан.

Керування структурою покривів реверсним режимом осадження

Профілометричні дослідження показали, що в міру потовщення осаду він з дрібнокристалічного рівномірного за розмірами зерен перетворюється на грубіший. Крупнокристалічну структуру спробували здрібнити застосуванням реверсного режиму ведення електролізу. Відношення тривалості катодного і анодного періодів змінювали в межах 15—50, тривалість анодного періоду — 0,5—3,0 с, густина його струму — 0,2—0,5 А/см². Для електроліту Na₂WO₄ — 5% (моль) NaPO₃ за 1173 К оптимальними є і_к та i_a — 0,15 та 0,30 А/см², $\tau_{\kappa} = 25$ с; $\tau_a = 1,5$ с. В результаті на катоді вдалося отримати порівняно гладкі покриви завтовшки до 0,5 мм.

Висновки

Заміна повітряної атмосфери на інертну не впливає на структуру і розміри зерен осадів при електролізі з вольфраматно-молібдатних розплавів. Уведення вуглекислого газу в атмосферу над цими розплавами приводить до здрібнення зерна осаду, переродження осаду в порошковий і співосадження порошків вуглецю з металом. Здрібнення структури осадів під дією атмосфери вуглекислого газу дає змогу значно збільшити мікротвердость і товщину осаду.

Накладення катодних імпульсів струму до 30 А/ст² при електроосадженні молібдену і вольфраму з вольфраматно-молібдатних розплавів на власну і чужорідну основи не порушує епітаксіального осадження. Умовою його виконання є неповне збіднення прикатодного шару димерними йонами. На чужорідній основі накладення початкового імпульсу приводить до зменшення розмірів зерен і деякого збільшення мікротвердості осаду.

Здійснено електроосадження вольфрамових і молібденових покривів з галогенідно-оксидних і оксидних розплавів та вивчено вплив умов електролізу на фізико-механічні властивості осадів.

Застосування реверсного режиму осадження дає змогу отримувати покриви товщиною до 0,5 мм з дрібнішою структурою.

РЕЗЮМЕ, Экспериментально подобраны способы управления (состав атмосферы над электролитической ванной, применение нестационарных токовых режимов, условия и параметры электролиза) структурой молибденовых и вольфрамовых покрытий в вольфраматно-молибдатных расплавах. Применение нестационарных токовых режимов для нанесения покрытий молибдена и вольфрама управляемой структуры позволяет целенаправленно повышать поверхностную твердость, износостойкость, абразивную и коррозионную стойкость конструкционных материалов.

Ключевые слова: молибден, вольфрам, покрытие, структура, атмосфера, режим электролиза, условия электролиза.

- Malyshev V. V. Chemistry and electrochemistry of tungsten-containing ionic melts / [V. V. Malyshev, A. I. Gab, N. N. Uskova, V. V. Soloviev] // Molten Salts Bulletin. — 2004. — No. 2. — P. 1—10.
- Malyshev V. Molybdenum electrometallurgical processes in ionic melts / V. Malyshev, A. Gab, M. Gaune-Escard // Mater. Manufacturing Proces. — 2008. — 23, is. 8. — P. 748—751.
- Gologan V. F. On the role of variable components of the current in the deposition of galvanic coatings / V. F. Gologan, Zh. I. Bobanova, M. K. Bologa // Intern. J. of Res. Studies in Sci., Engineering and Technology. 2016. 3, is. 11. P. 6—10.
- 4. *Dini J. W.* Electrodeposition: The materials science of coatings and substrates . Noyes Publications, New Jersey. USA, 1993. 367 p.
- 5. *Малишев В. В.* Високотемпературна електрохімія та електроосадження металів IV—VIA груп і їх сполук в іонних розплавах. К. : Вид-во Університету "Україна", 2004. 326 с.

90 ISSN 0136-1732. Адгезия расплавов и пайка материалов, 2018. Вып. 51

- 6. *Свойства, получение и применение тугоплавких соединений* / Под ред. Т. Я. Косолаповой. М. : Металлургия, 1986. 928 с.
- Махасоев М. В. Диаграммы состояния молибдатных и вольфраматных систем / М. В.Махасоев, Ф. Г.Алексеев, В. И.Луцык. — Новосибирск : Наука, 1978. — 320 с.

Надійшла 05.11.17

Malyshev V. V., Shakhnin D. B., Gab A. I., Ryzhenko O. O., Ustundag Z.

Methods of control of the structure of coatings of molybdenum and tungsten in tungstate-molybdate melts

The methods (the composition of the atmosphere above the electrolytic bath, the application of non-stationary current modes, conditions and parameters of electrolysis) were experimentally determined for control of the structure of molybdenum and tungsten coatings in tungstate-molybdate melts. The use of non-stationary current regimes for deposition of molybdenum and tungsten coatings with controllable structure allows to increase the surface hardness, wear resistance, abrasive and corrosion resistance of structural materials in a purposeful manner.

Keywords: molybdenum, tungsten, coating, structure, atmosphere, electrolysis regime, electrolysis conditions.