УДК 621.791.09:621.785

ВЛИЯНИЕ СКАНДИЙСОДЕРЖАЩЕЙ ПРОВОЛОКИ НА СТРУКТУРУ И СВОЙСТВА СОЕДИНЕНИЙ АЛЮМИНИЙ-ЛИТИЕВЫХ СПЛАВОВ, ВЫПОЛНЕННЫХ АРГОНОДУГОВОЙ СВАРКОЙ

Л. И. МАРКАШОВА, О. С. КУШНАРЕВА, И. И. АЛЕКСЕЕНКО

ИЭС им. Е. О. Патона НАНУ. 03680, г. Киев-150, ул. Боженко, 11. E-mail: office@paton.kiev.ua

Актуальность использования комплексного экспериментально-аналитического подхода для оценки наиболее значимых механических свойств показано на примере сварных соединений сложнолегированного алюминий-литиевого сплава 1460 системы Al-Cu-Li, выполненных аргонодуговой сваркой с применением присадочных проволок Cв-1201 и Св-1201 + 0,5 % Sc. С учетом конкретного вклада структурных факторов (химического состава, зеренной, субзеренной и дислокационной структуры, а также размера и объемной доли формирующихся фазовых выделений) выполнена оценка эксплуатационных свойств (прочности, пластичности, трещиностойкости) сварных соединений. Определено влияние каждого из конкретных структурно-фазовых параметров на механические свойства сварных соединений, их изменение под влиянием последующей термообработки и внешних нагружений, а также роль структурно-фазового состояния в концентрации и механизме релаксации локальных внутренних напряжений при легировании металла скандием. Библиогр. 12, рис. 5.

Ключевые слова: алюминиевые сплавы, сварной металл, скандий, термообработка, структурно-фазовое состояние, фазовые выделения, субструктура, плотность дислокаций, эксплуатационные свойства, трещиностойкость

С учетом возрастающей потребности в материалах для изготовления конструкций, работающих в сложных эксплуатационных условиях, что в значительной степени относится к аэрокосмической технике, весьма актуальным является подход к оптимизации и корректировке связи структура ↔ свойства с технологией сварки и последующей термообработки, который должен обеспечивать достаточный уровень эксплуатационных свойств сварных соединений [1]. К таким материалам с особыми свойствами относятся сверхлегкие алюминий-литиевые сплавы, обладающие достаточным уровнем удельной прочности, пластичности и трещиностойкости в сложных эксплуатационных условиях, а также технологичностью при криогенных температурах [2, 3].

При этом следует отметить, что некоторые важные свойства сложнолегированных алюминий-литиевых сплавов (прочностные характеристики, вязкость разрушения, трещиностойкость, сопротивление внешним, в том числе и динамическим нагрузкам) резко изменяются в процессе изготовления конструкций и при их эксплуатации, что в основном связано с особыми структурно-фазовыми превращениями в процессе различных технологических операций, а также с влиянием условий сварки [3]. Показательны в этом плане и изменения механических свойств подобного типа сплавов, обусловленные термообработкой и свя-

занные не только с влиянием химического состава и основных структурных факторов, но и с изменением их фазового состава [4].

Учитывая сложность структурно-фазового состояния этих материалов и особенно процессов фазообразования в различных условиях термодеформационного воздействия, представляется актуальной оценка влияния различных конкретных структурно-фазовых составляющих на изменение наиболее важных для эксплуатационных условий механических характеристик, а именно: показателей прочности и вязкости сварных соединений. Представляют также интерес исследования влияния структурных и фазовых характеристик сварных соединений на протекание процессов накопления внутренних напряжений и возможности их пластической релаксации, что является показателем трещиностойкости деформируемого материала, особенно в сложных аэродинамических условиях.

Для решения таких задач прежде всего требуется наличие наиболее полной экспериментальной базы, отражающей реальное представление о структурно-фазовом составе исследуемого материала, который формируется при используемых технологических режимах аргонодуговой сварки, изменениях этого состояния в условиях последующей термообработки и внешних нагружений.

Базовая экспериментальная информация о структурно-фазовом состоянии металла шва

ADDOMADINE

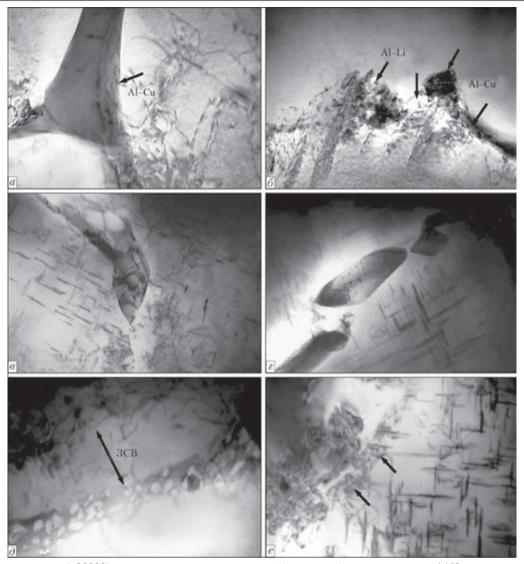


Рис. 1. Микроструктура ($\times 30000$) металла шва сварных соединений алюминий-литиевого сплава 1460, выполненных с применением присадочной проволоки Св-1201 (a, e, d) и Св-1201 + 0,5 % Sc (d, e, e): e0: e0:

сварных соединений алюминиевого сплава 1460 (Al-3 % Cu-2 % Li-0,08 % Sc), выполненных с присадочными проволоками Св-1201 (Al-6,5 % Cu-0,25 % Zr-0,3 % Mn) со скандием (0,5 %) и без него, была получена на следующих этапах исследования: 1 — непосредственно после аргонодуговой сварки; 2 — послесварочной термообработки (старение при T = 150 °C в течение 22 ч и отжиг при T = 350 °C в течение 1 ч); 3 — внешнего динамического нагружения полученных сварных соединений. Для исследований на различных структурных уровнях использовали комплексный методологический подход, включая оптическую, аналитическую растровую микроскопию (SEM-515 фирмы Philips, Голландия), а также микродифракционную просвечивающую электронную микроскопию (ЈЕМ-200СХ, ЈЕОL, Япония) с ускоряющим напряжением 200 кВ.

В результате исследований структурно-фазовых изменений в металле сварных соединений не-

посредственно после сварки и последующей термообработки в зависимости от легирования скандием [5–7] было установлено, что при применении проволоки Св-1201 без скандия непосредственно после сварки формируется зеренная структура, отличающаяся особым структурно-фазовым состоянием внутри зерен (зоны Гинье–Престона, Al_3Li , Al_3Zr) и межзеренных границ (МЗГ), точнее, наличием на МЗГ сложных по фазовому составу эвтектик, массивных, протяженных и состоящих преимущественно из алюминий-литиевых и алюминий-медных фаз, а также формированием особых приграничных зон, свободных от выделений (ЗСВ), с которыми, как правило, связано падение механических свойств сварных соединений (рис. $1, a, \partial$).

При применении скандийсодержащей проволоки Св-1201 после сварки наблюдаются следующие особенности структурных изменений.

Во-первых, размер кристаллитов шва почти в 3 раза меньше, чем при применении присадки без

скандия (рис. 1, δ). Последующая термообработка (350 °C, 1 ч) приводит и к измельчению субструктуры (блоков, субзерен). Это способствует более активному перераспределению химических элементов, что обусловлено процессами распада твердого раствора и последующего образования новых фаз (рис. 1, ϵ). При дополнительном легировании скандием также заметно повышается общая плотность дислокаций и активируются процессы их перераспределения (рис. 1, ϵ).

Во-вторых, при легирования скандием термообработка способствует изменению структуры МЗГ, а именно: несколько теряют свою плотность («разрыхляются») зернограничные эвтектики и значительно уменьшается объемная доля литиевых фаз вдоль МЗГ. Образующиеся в ходе термообработки скандийсодержащие фазовые выделения заполняют пространство ЗСВ и существенно их сужают, что, в свою очередь, способствует нивелированию негативного влияния этой зоны, четко проявляющегося в случае отсутствия скандия (рис. 1, e). Что касается зернограничных эвтектических образований, то эвтектика в металле шва с дополнительным легированием скандием при термообработке «рассыпается» и разлагается на отдельные обособленные фазовые образования (рис. 1, 2).

Экспериментальные результаты, полученные на различных структурных уровнях от макро- (зеренного) до микро- (дислокационного) позволили выполнить аналитическую оценку для определения дифференцированного ($\Delta \sigma$) вклада различных структурно-фазовых параметров в изменение интегральных ($\Sigma \sigma_{\rm T}$) значений механических характеристик и, прежде всего, прочностных, а также

пластичности и трещиностойкости. При этом оценку суммарного значения приращения предела текучести $\sum \sigma_{_{\mathrm{T}}}$ для металла швов без скандия и со скандием выполняли по аналитическим зависимостям Холла-Петча, Орована и др. [8-10] с учетом сопротивления решетки металла движению свободных дислокаций (напряжения трения решетки $\Delta \sigma_0$), химического состава (твердорастворного упрочнения $\Delta \sigma_{_{\text{ТВ, D}}}$), зеренного ($\Delta \sigma_{3}$) и субзернного упрочнения ($\Delta \sigma_c$), а также реальной плотности дислокаций (дислокациОценка показала, что интегральное значение прочности металла шва и конкретный вклад различных структурных факторов изменяется в зависимости как от технологических режимов (сварки, термообработки), так и от легирования. Для скандийсодержащего шва по сравнению со швом без скандия наблюдается возрастание прочностных характеристик ($\Sigma \sigma_{x}$) примерно на 16 МПа (8 %) непосредственно после сварки, на 8 МПа (3 %) после старения (150 °C, 22 ч) и на 86 МПа (29 %) после отжига (350 °C, 1 ч). В последнем случае максимальный вклад в упрочнение вносят фазовые образования (около 31 %), а минимальный — дислокационная плотность (почти до 7 %). Информацию о вкладе в упрочнение других структурных факторов для исследуемых составов шва при указанных режимах дает рис. 2, а. Необходимо отметить, что значительный вклад в уровень дисперсионного упрочнения металла шва вносят выделения Al₂Cu (20 %) и Al₃Sc (20 %) (рис. 2, б), которые и являются в основном упрочняющими фазами. Вклад фаз другого типа в дисперсионное упрочнение не настолько значительный и составляет 5...10 %. Приведенная оценка изменений предела текучести, выполненная с учетом реально формирующихся в металле шва структур, позволяет также оценить предел прочности (σ_{p}) шва по зависимости [10]

$$\frac{\sigma_{_{\mathrm{T}}}}{\sigma_{_{\mathrm{B}}}} = \left(\frac{\sigma_{_{\mathrm{T}}}}{\aleph}\right)^2 (1+m) \sqrt{1 + \frac{2}{1+m} \left(\frac{\aleph}{\sigma_{_{\mathrm{B}}}}\right)^2},$$

где показатель m = 0.3; к — коэффициент деформационного упрочнения.

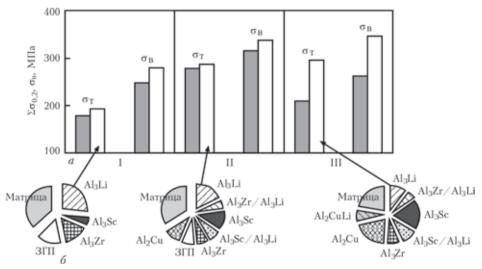


Рис. 2. Гистограмма дифференцированного вклада отдельных структурных параметров в интегральное изменение предела текучести и изменение предела прочности шва сварного соединения сплава 1460, выполненного с использованием присадочной проволоки Св-1201 (темные столбики) и Св-1201 + 0,5 % Sc (светлые) (a), и секторные диаграммы объемных долей фаз при применении Св-1201 + 0,5 % Sc (δ): I — после сварки; II — старения (150 °C, 22 ч); III — отжига (350 °C, 1 ч)

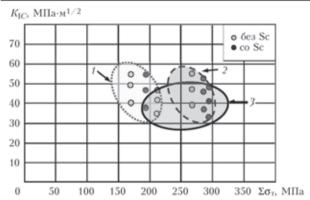


Рис. 3. Диаграмма изменения расчетной прочности и вязкости разрушения металла шва сварного соединения сплава 1460 после сварки (I), старения (150 °C, 22 ч) (I) и отжига (350 °C, 1 ч) (I)

Было также определено влияние структурных факторов на изменение параметров вязкости разрушения (K_{1C}) металла швов (рис. 3). Значения K_{1C} определяли по зависимости Краффта [11] $K_{1C} = (2E\sigma_{\rm T}\delta_{\rm k})^{1/2}$ (где E — модуль Юнга; $\sigma_{\rm T}$ — расчетное упрочнение; $\delta_{\rm k}$ — критическое раскрытие трещины, полученное по данным фрактографического анализа изломов с учетом размера фасеток (или ямок на поверхности разрушения)).

Установлено, что при легировании скандием наряду с повышением предела текучести для металла шва непосредственно после сварки параметр K_{1C} снижается в среднем на 5 % и состав-

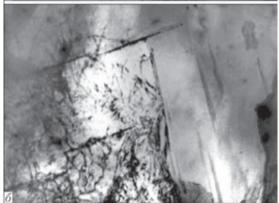


Рис. 4. Тонкая структура (\times 37000) отожженного (350 °C, 1 ч) металла шва сварного соединения сплава 1460 в условиях динамического нагружения: a — шов без скандия; δ — скандийсодержащий шов

ляет 35...43 МПа·м $^{1/2}$ (рис. 3). После старения наблюдается аналогичная картина: K_{1C} снижается в среднем на 6 % до 32...41 МПа·м $^{1/2}$. Отжиг оказывает большее влияние на изменение K_{1C} металла шва без скандия: наблюдается снижение почти на 25 % по сравнению с K_{1C} после сварки. При легировании скандием вязкость разрушения практически не изменяется, а прочность еще больше повышается, что свидетельствует об оптимальном сочетании ресурсных характеристик таких сварных соединений (см. рис. 2, 3).

Исследования тонкой структуры металла шва после отжига (350 °C, 1 ч), при котором особо проявляется роль скандия и последующего динамического нагружения, показали, что без скандия в исследуемой зоне происходит неравномерное распределение дислокаций с четкой локализацией деформации, а деформируемый металл соответственно приобретает неустойчивое структурное состояние. Последнее проявляется в лавинообразном безбарьерном течении металла, о чем свидетельствуют мощные системы скольжения и полосы сдвига (рис. 4, а). При этом наблюдается значительная неравномерность в распределении плотности дислокаций вдоль полос сдвига, где внутри полос сдвига $\rho \sim 1.10^8...2.10^9$ см⁻², а непосредственно вдоль полосовых границ р ~ $\sim 8 \cdot 10^{10} \dots 2 \cdot 10^{11}$ см⁻², что приводит к формированию резких градиентов локальных внутренних напряжений ($\Delta \tau_{_{\rm Л.ВH}}$).

При оценке $\tau_{_{Л.ВН}}$ с учетом плотности дислокаций [12] установлено, что полосовые границы представляют собой протяженные локальные концентраторы внутренних напряжений, где $\tau_{_{П.ВН}}$ = 600...1500 МПа (G/(0,45...0,18)), где G — модуль сдвига). Во внутренних объемах полос сдвига значения $\tau_{_{Л.ВН}}$, напротив, резко снижаются до 5...15 МПа (почти на 2 порядка) (рис. 5, a). В итоге в металле шва без скандия в условиях динамического нагружения вдоль полос сдвига создается резкий ($\Delta \tau_{_{Л.ВН}}$ = 590...1480 МПа) протяженный градиент локальных внутренних напряжений, являющихся причиной трещинообразования, a, значит, и снижения свойств.

В случае же легирования скандием в металле шва при аналогичных условиях динамического нагружения наблюдается структура другого характера, для которой характерно более равномерное, без значительных градиентов распределение дислокаций, а также общее измельчение (фрагментация) (см. рис. 4, δ). При этом отмечается устойчивое блокирование возникающих мощных систем скольжения фазовыми выделениями особого типа со скандийсодержащими составляющими (рис. 5, δ). Именно эти фазы способствуют фрагментации структуры и соответственно более равномер-

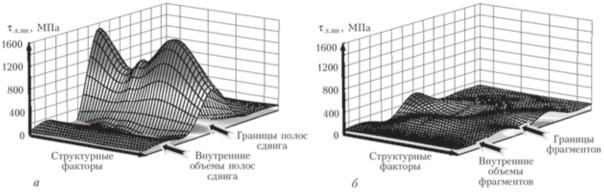


Рис. 5. Распределение локальных внутренних напряжений в металле шва, полученного при применении проволоки Св-1201 (*a*) и Св-1201 + 0.5 % Sc (*б*) после термообработки (350 °C, 1 ч) и внешнего динамического нагружения

ному распределению внутренних напряжений в металле шва. Формирование структур подобного типа повышает возможность пластической релаксации нарастающих внутренних напряжений за счет подключения к дислокационным дополнительных ротационных механизмов, что и подтверждается вязким характером разрушения сварных соединений.

Выводы

42

- 1. Легирование металла шва скандием по сравнению с его состоянием без скандия при всех исследуемых режимах сварки и термообработки приводит к диспергированию фаз, зеренной и субзеренной структуры, увеличению плотности дислокаций и равномерному их распределению, активации процессов фазообразования во внутренних объемах зерен, дроблению и уменьшению объемной доли зернограничных эвтектик.
- 2. Аналитические оценки дифференцированного вклада различных структурно-фазовых параметров в изменение свойств прочности (σ_{τ} , σ_{g}), пластичности (K_{1C}) и трещиностойкости исследуемых сварных соединений показали, что легирование скандием способствует повышению общего значения предела текучести $\sum \sigma_{\tau}$ сварных соединений, особенно после отжига. Наибольший вклад в упрочнение ($\Delta \sigma$) вносят фазовые образования, а минимальный дислокационная плотность.
- 3. Легирование скандием способствует более равномерному распределению нарастающих локальных внутренних напряжений, фрагментации мощных полос сдвига, формирующихся в шве в условиях динамических нагружений, что способствует трещиностойкости сварного соединения и соответственно повышению релаксационной спо-

собности шва за счет подключения к дислокационным дополнительных ротационных механизмов пластической релаксации.

- 1. Критерий оценки механических свойств соединений разнородных материалов / Л. И. Маркашова, Г. М. Григоренко, В. В. Арсенюк, Е. Н. Бердникова // Матер. Междунар. конф. «Математическое моделирование и информационные технологии в сварке и родственных процессах» (16—20 сент. 2002 г., Кацивели, Крым). Киев: ИЭС им. Е. О. Патона, 2002. С. 107–113.
- 2. *Фридляндер И. Н., Чуистов К. В., Березина А. Л.* и др. Алюминий-литиевые сплавы. Структура и свойства. Киев: Наук. думка, 1992. 192 с.
- 3. Давыдов В. Г., Елагин В. И., Захаров В. В. Исследования ВИЛСа в области повышения свойств качества и технологичности полуфабрикатов из алюминиевых сплавов // Технология легких сплавов. 2001. №5/6. С. 6–16.
- 4. *Захаров В. В.* Некоторые проблемы использования алюминий-литиевых сплавов // Металловед. и термич. обработка металлов. 2003. № 2. С. 8–14.
- 5. *Маркашова Л. И.*, *Григоренко Г. М.*, *Ищенко А. Я.* и др. Влияние добавок скандия на тонкую структуру металла шва соединений алюминиевого сплава 1460 / // Автомат. сварка. 2006. № 2. С. 22–28.
- Маркашова Л. И., Григоренко Г. М., Лозовская А. В. и др. Влияние добавок скандия на структурно-фазовое состояние металла шва соединений алюминиевых сплавов после термообработки // Там же. – 2006. – № 6. – С. 9–14.
- 7. Маркашова Л. И., Кушнарева О. С. Сварные соединения сложнолегированных алюминий-литиевых сплавов, структура и эксплуатационные свойства // Строительство, материаловедение, машиностроение: Сб. науч. трудов. Вып.64. Днепропетровск: ПГАСА, 2012. С. 75–80
- 8. *Конрад Г*. Модель деформационного упрочнения для объяснения влияния величины зерна на напряжение течения металлов // Сверхмелкое зерно в металлах / Под ред. Л. К. Гордиенко. М.: Металлургия, 1973. С. 206–219.
- 9. *Келли А.*, *Николсон Р. Ди*сперсионное твердение. М.: Металлургия, 1966. 187 с.
- Гольдишейн М. И., Литвинов В. С., Бронфин Б. М. Металлофизика высокопрочных сплавов. М.: Металлургия, 1986. 312 с.
- 11. *Романив О. Н.* Вязкость разрушения конструкционных сталей. М.: Металлургия, 1979. 176 с.
- 12. Конева Н. А., Лычагин Д. В., Теплякова Л. А. и др. Теоретическое и экспериментальное исследование дисклинаций. Л.: Изд-во ЛФТИ, 1986. С. 116–126.

Поступила в редакцию 28.03.2014

