УДК 621.793.621.438

ДИФФУЗИОННЫЕ ЖАРОСТОЙКИЕ ПОКРЫТИЯ ДЛЯ НЕРЖАВЕЮЩЕЙ И УГЛЕРОДИСТОЙ СТАЛЕЙ

А.Л. Борисова¹, Н.И. Капорик¹, Т.В. Цымбалистая¹, М.А. Васильковская²

¹ИЭС им. Е.О. Патона НАН Украины. 03150, г. Киев, ул. Казимира Малевича, 11. E-mail: borisov@pwi.ru.kiev.ua

²Институт проблем материаловедения им. Францевича.

03680, г. Киев, ул. Кржижановского, З. Е -mail: kiparis-gpk@ukr.net

Представлены результаты исследования жаростойкости диффузионных покрытий на стали 08Х17Т и стали 45, полученных методами алитирования и хромоалитирования в порошковых смесях при температуре 900...950 °C в течение 2...5 ч. По кинетическим зависимостям окисления образцов с покрытиями в температурном интервале 800...1000 °C построены параметрические диаграммы жаростойкости, позволяющие проводить оценку долговечности защитных покрытий при температурах до 1000 °C. Библиогр. 8, табл. 3, рис. 7.

Ключевые слова: алитирование, хромоалитирование, жаростойкие покрытия, микроструктура, фазовый состав, кинетика окисления, параметр жаростойкости

Все типы защитных покрытий, в том числе и жаростойкие, по характеру их формирования можно разделить на две основные группы: диффузионные и наслоенные покрытия [1].

I — покрытия диффузионного типа, состав которых является продуктом взаимодействия насыщающей среды с металлом основы. Их получают насыщением поверхности защищаемого металла одним или несколькими элементами для образования защитного слоя.

II — покрытия наслоенного типа, наносимые на поверхность защищаемого металла из жаростойкого материала, например, методами газотермического напыления.

Наиболее широко применяются покрытия диффузионного типа. Их преимуществом является хорошее сцепление с основой и сравнительно простая технология нанесения, недостатком – высокая температура формирования, довольно активное диффузионное взаимодействие с основой.

Покрытия наслоенного типа наносятся, как правило, на холодную или подогретую до невысокой температуры основу, однако имеют более слабое, по сравнению с диффузионными покрытиями, сцепление с основой и требуют использования и более сложного оборудования.

Совмещение способов формирования защитных покрытий, по-видимому, позволит значительно уменьшить недостатки обеих групп.

При выполнении проекта программы «Ресурс – 2» P5.1.2 «Повышение долговечности и эффективности работы рекуперативных теплообменников путем нанесения жаростойких излучающих покрытий для защиты поверхностей нагрева, которые работают в потоке продуктов сгорания топлива, и совершенствования конструкций внутренних вторичных излучателей» были разработаны жаростойкие покрытия двух типов. Результаты исследования покрытий, получаемых методами газотермического напыления из композиционного порошка FeAlCr с добавкой 2 мас. % CeO₂, опубликованы в работе [2]. Настоящая работа посвящена решению той же проблемы с помощью покрытий диффузионного типа.

К наиболее перспективным диффузионным методам получения жаростойких покрытий на сталях относятся процессы алитирования и хромоалитирования [3–6]. При этом помимо жаростойкости диффузионное насыщение поверхности металлов и сплавов алюминием и одновременное или последовательное насыщение алюминием и хромом приводит к повышению коррозионной и эрозионной стойкости. Среди многочисленных методов алитирования и хромоалитирования наиболее широкое распространение и промышленное применение получил метод насыщения в порошковых смесях.

Известно, что структура, фазовый состав, защитные свойства и долговечность покрытий зависят от таких факторов, как состав порошковой смеси, температура и время диффузионного насыщения, содержание легирующих элементов и многое другое, в связи с чем решение задачи повышения долговечности и эффективности работы конкретных деталей требует проведения дополнительных исследований.

В настоящей работе проводилось исследование процессов алитирования и хромоалитирования стали 08X17T (применяется для внешних вторичных излучателей рекуператоров) и стали 45 (для выяснения возможной замены легированной стали на углеродистую).

© А.Л. Борисова, Н.И. Капорик, Т.В. Цымбалистая, М.А. Васильковская, 2019

Методы и материалы. Процессы алитирования и хромоалитирования проводили в специальных контейнерах с плавким затвором при температуре 900...950 °С в течение 2...5 ч. Основными компонентами порошковых смесей были:

порошок алюминиевой пудры (источник алюминия при алитировании), смесь порошков хрома и алюминия (при хромоалитировании);

порошок фтористого алюминия AlF₃ (активатор процесса);

порошок оксида алюминия (инертная добавка, предотвращающая спекание частиц порошков алюминия и смеси алюминия с хромом);

порошок гидрида титана (для извлечения остатков кислорода из порошковой смеси).

Рентгеноструктурный фазовый анализ (РСФА) выполняли на дифрактометре ДРОН-3 в Си K_{α} излучении с графитовым монохроматором. Фазы расшифровывали с помощью элементной базы данных ASTM.

Вырезку образцов с покрытиями выполняли на станке Isomet 1000. Вырезанные образцы заливали протокрилом марки М, шлифование проводили с использованием наждачной бумаги зернистостью от 600 до 1200, а полирование — алмазными кругами от 80...40 до 20...14 на станке Row Rathenow Metasines. Финишную полировку выполняли на войлочном круге с использованием суспензии оксида хрома. Для выявления микроструктуры травление образцов проводили в спиртовом растворе NHO₃ для стали 45 и HF для стали 08X17T. Металлографические исследования выполняли на микроскопе Neophot 32, оснащенном цифровым фотоаппаратом. Микротвердость измеряли на микротвердомере ПМТ-3 при нагрузке 50 г. Количество измерений составляло не менее 50.

Результаты и обсуждение. На рис. 1. представлена микроструктура, на рис. 2 — рентгенограммы диффузионных покрытий на стали 08X17T и стали 45, а в табл. 1 их характеристика.

Как следует из представленных данных, при диффузионном насыщении сталей алюминием на поверхности формируются слои интерметаллида железа, отличающиеся по толщине и твердости. Хром, как известно, тормозит диффузию алюминия в железо, что приводит к меньшей толщине алитированного слоя на стали 08X17T по сравнению его со сталью 45, в то время как его твердость из-за наличия хрома повышается. Следует отметить, за областью интерметаллида FeAl

Таблица 1. Характеристика жаростойких покрытий

	Характеристика покрытия							
Покрытие	Толщина, мкм		Микротвердость, МПа		Фазовый состав			
	08X17T	Сталь 45	08X17T	Сталь 45	08X17T	Сталь 45		
Алитирование	160±15	230±20	3240±450	2560±490	FeAl	FeAl, Fe ₃ Al		
Хромоалитирование	200±10	205±10	3340±630	2800±690	FeAl, Fe _{31,2} Cr _{10,3} Al _{58,5}	FeAl, Fe ₃ Al		

Рис. 1. Микроструктура (×400) алитированных (*a*, *б*) и хромоалитированных (*b*, *c*) стали 08Х17Т (*a*, *b*) и стали 45 (*б*, *c*)

Рис. 2. Рентгенограммы диффузионных покрытий на стали 08Х17Т (*a*, *в*) и стали 45 (*б*, *г*), полученных методами алитирования (*a*, *б*) и хромоалитирования (*b*, *c*)

Рис. 3. Кинетические зависимости окисления алитированных (*a*, *б*) и хромоалитированных (*b*, *c*) стали 08Х17Т (*a*, *b*) и стали 45 (*б*, *c*), а также незащищенной стали 08Х17Т (*d*)

Рис. 4. Микроструктура (×200) алитированных (a, δ) и хромоалитированных (b, c) стали 08Х17Т (a, b) и стали 45 (δ , c) после испытания на жаростойкость при температуре 1000 °С в течение 5 ч

располагается область твердого раствора алюминия в железе, простирающаяся на глубину до 400 мкм (для стали 08X17T), и до 600 мкм (для стали 45), при этом микротвердость его плавно уменьшается по направлению к сердцевине (от 2000 до 1500 МПа).

Рис. 5. Рентгенограммы алитированных (*a*, *б*) и хромоалитированных (*b*, *c*) стали 08Х17Т (*a*, *b*) и стали 45 (*б*, *c*) после испытания на жаростойкость при температуре 1000 °С в течение 5 ч

ISSN 0005-111X АВТОМАТИЧЕСКАЯ СВАРКА, №10, 2019

НАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕЛ

0

ñ

Покрытие	Характеристика покрытия							
	Толщина, мкм		Микротвердость, МПа		Фазовый состав			
	08X17T	Сталь 45	08X17T	Сталь 45	08X17T	Сталь 45		
Алитирование	320±15	320±20	2780±560	2370±400	FeAl, Al ₂ O ₃	Fe ₃ Al, Al ₂ O ₃		
Хромоалитирование	290±5	300±10	3260±520	2230±320	(Fe,Cr) ₃ Al, Al ₂ O ₃	$(Fe_2Cr)Al, Al_2O_3$		

Таблица 2. Характеристика покрытий после испытаний на жаростойкость при температуре 1000 °С в течение 5 ч

400

Рис. 6. Распределение элементов по глубине диффузионных слоев хромоалитированной стали 08Х17Т в исходном состоянии (*a*) и после окисления на воздухе при температуре 1000 °С в течение 5 ч (*б*)

А, мкм О

При хромоалитировании стали 08X17T в поверхностном слое покрытия обнаружено два интерметаллида: FeAl, легированный хромом, и $Fe_{31,2}Cr_{10,3}Al_{58,5}$ (фаза, близкая по составу к Fe_3CrAl_6), а на стали 45 — FeAl и Fe₃Al, легированные хромом. Микротвердость этих покрытий несколько выше, чем алитированных слоев на тех же сталях.

200

Типичные кинетические зависимости окисления диффузионных покрытий и незащищенной стали 08Х17Т представлены на рис. 3, а на рис. 4 и 5 — микроструктура и рентгенограммы покрытий после испытаний на жаростойкость при температуре 1000 °C.

Как следует из представленных данных (рис. 3), механизм окисления диффузионных покрытий подчиняется параболическому временному закону во всем исследованном температурном интервале 800...1000 °С. Судя по результатам РСФА (рис. 5, табл. 2), основные изменения фазового состава в процессе окисления диффузионных покрытий — это образование оксида алюминия Al₂O₂ в поверхностных слоях, за которым располагается область интерметаллидов FeAl или Fe₃Al (в случае алитирования) или интерметаллидов FeAl и Fe₃Al, легированных хромом (в случае хромоалитирования), постепенно переходящие в твердые растворы. Судя по результатам рентгеноспектрального микроанализа, содержание алюминия в покрытии снижается как в результате образования оксидной пленки, так и рассасывания его в основе. Так, например, на поверхности хромоалитированной стали 08Х17Т в исходном состоянии (рис. 6, *a*) содержание алюминия составляет около 31 мас. %, что соответствует составу интерметаллида FeAl, постепенно снижаясь на глубине около 150 мкм до 15 % (примерное содержание Al в Fe₃Al), а далее до 2 % на глубине 600 мкм. После окисления при температуре 1000 °C в течение 6 ч эти величины составляют соответственно около 20 % и в поверхностном слое примерно 15 мас. % на глубине около 200 мкм (рис. 6, δ).

100

50

150

h. NKV

Сравнивая микроструктуру диффузионных покрытий в исходном состоянии (рис. 1) и после окисления при максимальной температуре 1000 °С (рис. 4), можно отметить наличие продольных (по глубине) трещин на стали 08Х17Т и практическое их отсутствие на стали 45.

Дефекты в диффузионных покрытиях подобного рода возникают в связи с возникновением остаточных напряжений, величина и знак которых зависят от химического и фазового состава диффузионного слоя, который в данном случае существенно отличается (см. рис. 2, табл. 1). Что касается влияния такого рода трещин на жаростойкость защитных покрытий, то оно далеко неоднозначно. Дело в том, что для долговечности покрытий, работающих при высоких температурах, не менее важной характеристикой является термостойкость, от которой зависит сохранение или отслаивание защитного слоя в процессе испытаний. Одним из путей повышения термостойкости заключается в снижении эффективного модуля упругости защитного слоя путем создания

Рис. 7. Параметрические диаграммы жаростойкости для алитированных (*a*, *б*) и хромоалитированных (*b*, *c*) стали 08Х17Т (*a*, *b*) и стали 45 (*б*, *c*) по результатам испытаний на жаростойкость при температурах 800...1000 °C в течение 1...5 ч

деформационной структуры [7]. Это может быть достигнуто благодаря сохранению значительной остаточной пористости или создания исскуственным путем микротрещин, ориентированных перпендикулярно поверхности раздела покрытия с основой [8]. Как показали исследования, в нстоящей работе наличие трещин в покрытиях не отразилось на характер их окисления, о чем свидетельствуют кине-

Таблица 3. Результаты расчета параметров жаростойкости хромоалитированной стали 45

Температура, К	10 ³ / <i>T</i>	Время окисления, ч	lg t	Удельный прирост массы, мг/см ²	lg q	Qlge RT	Параметр жаро- стойкости Р	
1073	0,932	1	0	0,32	-0,49	6,71	6,709746	
		2	0,301	0,467	-0,33		6,408746	
		3	0,477	0,52	-0,28		6,232746	
		4	0,602	0,66	-0,176		6,107746	
		5	0,699	0,72	-0,143		6,010746	
		6	0,778	0,75	-0,12		5,931746	
1173	0,852	1	0	0,54	-0,267	6,138	6,137731	
		2	0,301	0,9	-0,046		5,836731	
		3	0,477	0,97	-0,012		5,660731	
		4	0,602	1,04	0,018		5,535731	
		5	0,699	1,08	0,03		5,438731	
		6	0,778	1,457	0,16		5,359731	
1273	0,785	1	0	0,75	-0,122	5,65	5,655584	
		2	0,301	1,04	0,0185		5,354584	
		3	0,477	1,36	0,136		5,178584	
		4	0,602	1,47	0,168		5,053584	
		5	0,699	1,51	0,179		4,956584	
		6	0,778	1,727	0,237		4,877584	
<i>Q</i> = 33025,5								

тические зависимости окисления диффузионных покрытий, представленные на рис. 3.

Проведенные исследования позволили путем построения параметрических диаграмм жаростойкости (рис. 7) проводить оценку долговечности защитных деталей для любых температур до 1000 °С.

Методика построения параметрических диаграмм жаростойкости детально изложена в работе [4], а в табл. 3 в качестве примера представлены результаты расчета параметра жаростойкости хромоалитированной стали 45 по результатам настоящей работы.

Выводы

В результате проведенных исследований установлено, что алитирование повышает жаростойкость стали 45 в 2 раза, стали 08Х17Т — более чем в 7 раз, а хромоалитирование стали 45 — в 3.5 раза. Наиболее высокую жаростойкость в диапазоне 800...1000 °С имеет хромоалитированная сталь 08X17T, которая превышает стойкость незащищенной стали при 1000 °C более, чем в 25 раз. Сравнение результатов настоящей работы с предыдущими исследованиями [1] показало, что диффузионные покрытия (алитирование и хромоалитирование) способны в целом защищать от окисления сталь 08X17T и сталь 45 до более высоких температур (вплоть до 1000 °C) по сравнению с АДМ- и ЭДМ-покрытиями из композиционного порошка FeAlCr — CeO₂ (до 800 °C). Однако следует иметь в виду, что методы газотермического напыления характеризуются такими преимуществами по сравнению с диффузионными, как возможность защиты крупногабаритных деталей и получения больших толщин защитного слоя.

В настоящее время изготовлены образцы-прототипы внутренних вторичных излучателей рекуператоров из стали 08Х17Т и стали 45 с диффузионными и газотермическими покрытиями для длительных испытаний на основном стенде Института газа НАНУ в течение 2019–2020 гг.

Список литературы

- Борисов Ю.С., Борисова А.Л., Цымбалиста Т.В. и др. (2019) Жаростойкие газотермические покрытия на основе интерметаллида FeAlCr с добавкой CeO₂. Автоматическая сварка, 9, 31–39.
- Аппен А.А. (1976) Температуроустойчивые неорганические покрытия. Изд. 2-е, пер. и доп. Ленинград, Химия.
- Борисенюк Г.В., Васильев Л.А., Ворошнин Л.Г. и др. (1981) Химико-термическая обработка металлов и сплавов. Справочник. Москва, Металлургия.
- Лыгденов Б.Д., Гурьев А.М., Мосоров В.И., Бутухаров В.А. (2015) Перспективные диффузионные покрытия. Международный журнал экспериментального образования, 12(4), 1, 572–573.
- 5. Мубояджян С.А., Галоян А.Г. (2012) Диффузионные алюминиевые покрытия для защиты поверхности внутренней полосы лопаток турбин. *Металлы*, **5**, 4–13.
- 6. Бурнышев И.Н., Порываев Д.А. (2015) Алитирование сталей в динамической насыщающей среде. *Химическая физика и мезоскопия*, 17, **3**, 364–371.
- 7. Grot A.S., Mortin I.K. (1981) Behavior of plasma-sprayed ceramic thermal-barrier coating for gas turbine applications. *Amer. Ceram. Soc. Bull*, **60**, 807–811.
- Борисова А.Л., Адеева Л.И., Туник А.Ю. (1994) Влияние характеристик исходного материала и условий напыления на структуру и свойства газотермических покрытий. Препр. НАН Украины Институт электросварки им. Е.О. Патона.

References

- 1. Borisov, Yu.S., Borisova, A.L., Tsymbalista, T.V. et al. (2019) Heat- resistant thermal coatings based on intermetallics with CeO₂ additives. *The Paton Welding J.*, **9**. In print.
- 2. Appen, A.A. (1976) *Temperature-resistant inorganic coatings*. 2nd ed. Leningrad, Khimiya [in Russian].
- Borisenyuk, G.V., Vasiliev, L.A., Voroshnin, L.G. et al. (1981) *Chemical and heat treatment of metals and alloys*. In: Refer. book. Moscow, Metallurgiya [in Russian].
- Lygdenov, B.D., Guriev, A.M., Mosorov, V.I., Butukharov, V.A. (2015) Perspective diffusion coatings. *Int. J. of Experimental Education*, 12(4), [in Russian]??.
- 5. Muboyadzhyan, S.A., Galoyan, A.G. (2012) Diffusion aluminium coatings for protection of surface of inner sealing band of turbine blades. *Metally*, **5**, 4-13 [in Russian].
- 6. Burnyshev, I.N., Poryvaev, D.A. (2015) Aluminizing of steels in dynamic saturation medium. *Khimicheskaya Fizika i Mezoskopiya*, 17(**3**), 364-371 [in Russian].
- 7. Grot, A.S., Mortin, I.K. (1981) Behavior of plasma-sprayed ceramic thermal-barrier coating for gas turbine applications. *Amer. Ceram. Soc. Bull.*, **60**, 807-811.
- 8. Borisova, A.L., Adeeva, L.I., Tunik, A.Yu. (1994) *Influence* of characteristics of initial material and conditions of spraying on structure and properties of thermal coatings. Kyiv, PWI [in Russian].

ДИФУЗІЙНІ ЖАРОСТІЙКІ ПОКРИТТЯ ДЛЯ НЕРЖАВІЮЧОЇ ТА ВУГЛЕЦЕВОЇ СТАЛЕЙ

А.Л. Борисова¹, Н.І Капорік¹, Т.В. Цимбаліста¹, М.А. Васильківська²

¹IEЗ ім. Є.О. Патона НАН України. 03150, м. Київ, вул. Казимира Малевича, 11. E-mail: borisov@pwi.ru.kiev.ua

²Інститут проблем матеріалознавства ім. Францевича.

03680, м. Київ, вул. Кржижанівського, З. Е -mail: kiparis-gpk@ukr.net

Представлено результати дослідження жаростійкості дифузійних покриттів на сталі 08Х17Т та сталі 45, отриманих методами алітування та хромоалітування в порошкових сумішах при температурі 900...950 °C протягом 2...5 год. За кінетичними залежностями окислення зразків з покриттями в температурному інтервалі 800...1000 °C побудовані параметричні діаграми жаростійкості, що дозволяють здійснювати оцінку довговічності захисних покриттів при температурах до 1000 °C. Бібліогр. 8, табл. 3, рис. 7.

Ключові слова: алітування, хромоалітування, жаростійкі покриття, мікроструктура, фазовий склад, кінетика окислення, параметр жаростійкості

DIFFUSION HEAT-RESISTANT COATINGS FOR STAINLESS AND CARBON STEELS

A. L. Borisova¹, N. I. Kaporik¹, T. V. Tsymbalista¹, M. A. Vasilkovskaya²

¹E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymir Malevych Str., 03150, Kyiv, Ukraine. E-mail:borisov@pwi.ru.kiev.ua

> ²I. M. Frantsevich Institute of Problems of Materials Science ³Krzhyzhanovskogo Str., 03680, Kyiv. E-mail: kiparis-gpk@ukr.net

The paper presents the results of investigation of heat-resistant diffusion coatings on steel 08Kh17T and steel 45, produced by aluminizing and chrome aluminizing methods in powder mixtures at 900...950 °C temperature for 2...5 h. The parametric diagrams of heat resistance were plotted on the kinetic dependencies of oxidation of the samples with coatings in 800...1000 °C temperature interval. They allow evaluating endurance of protective coatings at any temperatures up to 1000 °C. 8 Ref., 3 Tabl., 6 Fig.

Keywords: aluminizing, chrome aluminizing, heat-resistant coatings, microstructure, phase composition, oxidation kinetics, heat resistance parameter

Поступила в редакцию 24.07.2019

