УДК 621.4.016.1 О.В. Малахов, В.Н. Малахов, О.А. Седнева, М.О. Малахова

ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА ИЗМЕНЕНИЯ ПРОСТРАНСТВЕННОЙ ТОПОЛОГИИ МАГНИТНОГО ПОЛЯ ФЕРРОМАГНИТНОГО ТЕЛА В ФОРМЕ ПЛАСТИНЫ, ВЫЗВАННОГО ЛОКАЛЬНЫМ УДАРНЫМ ВОЗДЕЙСТВИЕМ

Введение

В процессе эксплуатации металлоконструкций в результате воздействия эксплуатационных и внештатных критических механических нагрузок в структуре металла накапливаются нарушения, которые в последствии могут приводить к возникновению трещин и усталостным разрушениям металла. Для прогнозирования возможных разрушений металлоконструкций необходимо заблаговременно регистрировать зоны напряженного состояния металла, определяя характер и величину нагрузки, которой были подвержены элементы конструкции.

Постановка задачи

В работах [1] и [2] приведен расчет зон напряженного состояния металлоконструкций и произведена оценка напряженно-деформированного состояния металлоконструкций транспортных средств, предложено применение методов магнитометрической диагностики с целью прогнозирования их остаточного ресурса, что в конечном результате направлено на:

- обоснованное продление сроков эксплуатации объектов, подверженных малой нагрузке в течение гарантийного срока службы;
- предотвращение аварийных ситуаций на объектах, подвергшихся в процессе эксплуатации критическим нагрузкам.

Целью данного исследования является экспериментальное подтверждение теоретических выводов о наличии изменения топологии магнитного поля вблизи поверхности ферромагнитного тела в форме пластины, вызванного изменением остаточной намагниченности металла в зоне приложения локальной ударной нагрузки.

Основная часть

Воздействие на ферромагнетик больших растягивающих или сжимающих напряжений σ_0 может существенно изменить значения таких магнитных величин, как коэрцитивная сила H_c , начальная χ_a и обратимая χ_{Γ} магнитные восприимчивости, магнитоупругий прирост намагниченности $\Delta M_{\sigma}(H_i, \sigma)$, остаточная намагниченность M_{Γ} [1].

© О.В. Малахов, В.Н. Малахов, О.А. Седнева, М.О. Малахова, 2005

ISSN 1562-9945 91 Схема проведения эксперимента по определению изменения топологии магнитного поля вблизи поверхности объекта, обладающего ферромагнитными свойствами, под воздействием локальной ударной нагрузки представлена на рис. 1.

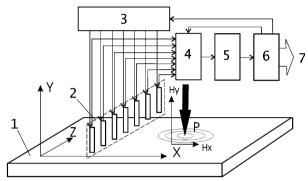


Рис. 1 – Схема поведения эксперимента

В качестве объекта исследования использовалась стальная пластина 1, над которой вдоль оси X перемещалась линейка из семи феррозондовых датчиков 2, расположенных перпендикулярно направлению движения. Ориентация датчиков выбрана таким образом, чтобы направление максимальной чувствительности совпадало с вертикальной составляющей напряженности магнитного поля Hy [4]. Расстояние между датчиками - 10 мм, зазор между поверхностью пластины и нижней кромкой датчиков - 15 мм. Замеры производились через каждые 10 мм перемещения линейки 2 над поверхностью пластины 1 в направлении оси X.

Питание обмоток возбуждения феррозондовых датчиков осуществляется блоком 3 поочередно. Очередность активации датчиков задается микропроцессором 6, синхронно с этим сигнал с выходов измерительных обмоток феррозондовых датчиков через аналоговый коммутатор 4 подключается ко входу аналогово-цифрового преобразователя 5. Информация о величине вертикальной составляющей напряженности магнитного поля Ну для каждого из феррозондовых датчиков через последовательный канал 7 RS232 передается в персональный компьютер, где импортируется в форму электронных таблиц редактор Excel.

Результаты измерений в относительных единицах, пропорциональных величине (А/м) вертикальной составляющей напряженности магнитного поля Ну для каждого из феррозондовых датчиков до приложения локальной ударной нагрузки представлены в таблице 1.

Наблюдается достаточно равномерное распределение интенсивности вертикальной составляющей напряженности магнитного поля Ну вдоль поверхности. После приложения точечного одиночного ударного воздействия в точку поверхности пластины с координатами X=7см, Y=4см производится повторный замер. Далее рассчитывалось изменение интен-

92 ISSN 1562-9945

Таблица 1 Распределение величины вертикальной составляющей напряженности магнитного поля Ну вдоль поверхности пластины до приложения ударной нагрузки

Положение измерительной линейки по оси X, см	Номер датчика (положени по оси Z, см)									
	1	2	3	4	5	6	7			
1	-26	-25	-22	-23	-24	-24	-22			
2	-25	-24	-21	-22	-23	-23	-21			
3	-25	-24	-22	-22	-23	-23	-21			
4	-25	-25	-22	-22	-23	-23	-22			
5	-25	-25	-22	-22	-23	-23	-22			
6	-25	-25	-22	-22	-23	-24	-22			
7	-25	-25	-22	-23	-23	-24	-22			
8	-26	-25	-22	-22	-23	-24	-22			
9	-25	-25	-22	-22	-23	-23	-22			
10	-25	-25	-22	-22	-23	-23	-22			
11	-25	-25	-22	-22	-23	-23	-22			
12	-25	-25	-22	-22	-23	-23	-22			
13	-26	-25	-22	-22	-23	-24	-22			
14	-26	-25	-22	-23	-23	-24	-22			
15	-26	-25	-22	-23	-24	-24	-22			
16	-26	-25	-22	-23	-24	-24	-22			
17	-26	-25	-22	-23	-24	-24	-22			

ISSN 1562-9945 93

сивности вертикальной составляющей напряженности магнитного поля для каждой из точек как разность величин при первом и втором замере (табл. 2)

Таблица 2 Изменение величины вертикальной составляющей напряженности магнитного поля Ну вдоль поверхности пластины в результате приложения ударной нагрузки

Положение измерительной линейки по оси X, см	I номер патчика (положение I						
, -	1	2	3	4	5	6	7
1	-1	-1	-1	-1	-1	-1	0
2	-4	-3	-4	-3	-3	-4	-4
3	-4	-3	-2	-2	-2	-3	-3
4	-3	-1	0	1	1	-1	0
5	-1	2	4	5	5	3	2
6	-1	3	7	9	9	8	5
7	2	5	10	11	11	10	6
8	5	5	6	5	5	6	2
9	1	2	2	0	-1	-1	-2
10	-1	-1	-2	-4	-5	-5	-4
11	-2	-3	-5	-6	-7	-7	-5
12	-1	-2	-4	-5	-6	-6	-3
13	1	0	-1	-2	-2	-1	1
14	2	1	1	2	1	2	3
15	3	3	4	4	4	4	5
16	3	4	4	5	5	4	5
17	4	4	5	6	5	4	5

По полученным значениям изменения интенсивности вертикальной составляющей напряженности магнитного поля для каждой из точек был построен график, который отображает качественное изменение величины остаточной намагниченности металла (рис. 2). На графике плоскостные координаты X и Z отображают положение точек измерения вдоль поверхности пластины, а ось ординат — изменение топологии магнитного поля над поверхностью пластины вызванного изменением остаточной намагниченности металла в зоне приложения ударного воздействия.

Как видно из графика, в точке приложения нагрузки (с координатами $X=7\,\mathrm{cm},\ Y=4\,\mathrm{cm}$) выявляется резкое изменение напряженности магнитного поля, свидетельствующее об изменении остаточной намагниченности. Колебания намагниченности вблизи точки приложения нагрузки могут быть объяснены распределением волн остаточных напряжений в металле в результате удара.

94 ISSN 1562-9945

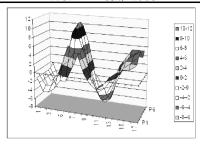


Рис. $2-\Gamma$ рафик изменения остаточной намагниченности металла в зоне приложения ударного воздействия

Анализируя построенную диаграмму, можно сделать вывод, что ближе к точке приложения ударной нагрузки изменения остаточной намагниченности более значительны. Также на рисунке 2 видно, что и начальное и конечное значение намагниченности в точке нагрузки имеет более высокое значение. Это связано с тем, что к данной точке была неоднократно приложена нагрузка в ряде предыдущих экспериментов. Данный факт показывает, что не только изменение намагниченности, но и само ее начальное значение отображает предыдущую историю тела.

Выволы

Экспериментально подтверждено наличие изменения топологии магнитного поля вблизи поверхности ферромагнитного тела в форме пластины, вызванного изменением остаточной намагниченности металла в зоне приложения локальной ударной нагрузки.

Литература

- 1. Расчет зон напряженного состояния металлоконструкций транспортных средств для оценки достоверности их определения магнитометрическим методом / Смирный М.Ф., Солодовник М.Д., Малахов О.В., Нестерова В.В.// Вісник Східноукр. Націон. ун-ту ім. В. Даля. Луганськ, СНУ. 2004. 12(82).-С 154-158.
- 2. Смирный М.Ф., Солодовник М.Д., Малахов О.В. Оценка напряженно-деформированного состояния металлоконструкций транспортных средств и прогнозирование их остаточного ресурса методом магнитометрической диагностики. // Праці Луганського відділення Міжнародної Академії інформатизації. Луганськ, 2004. 2(9). C.143-147.
- 3. В Г. Кулеев, Г. В. Бида, Л. В. Антагулова. О возможности использования остаточной намагниченности от упругих напряжений для их неразрушающего контроля в стальных ферромагнитных конструкциях. // Дефектоскопия. 2002. 12. с. 7-19.
- 4. Клаасен К. Б. Основы измерений. Электронные методы и приборы в измерительной технике. М.: Постмаркет, 2002. 352 с.

ISSN 1562-9945 95