УДК 681.876.2

А.И. Гуда, А.И. Михалев

РАСШИРЕНИЕ РАБОЧЕГО ДИАПАЗОНА ПОИСКОВОЙ ИДЕНТИФИКАЦИИ НЕЛИНЕЙНЫХ ДИНАМИЧЕСКИХ СИСТЕМ

Аннотация: В статье рассмотрены вопросы расширения рабочего диапазона идентификации при использовании квадратчной зависимости в функции качества на примере идентификации динамической системе Лоренса.

Ключевые слова: хаотическая динамика, система Лоренса, поисковая идентификация, адаптивно-поисковая идентификация.

Введение

В работе [1] были рассмотрены вопросы, связанные с недостатками в процессе работы систем адаптивно-поисковой идентификации. В качестве одного из наиболее существенных недостатков была отмечена сильная ограниченность рабочего диапазона q_{γ} . Наличие этого недостатка, с одной стороны, приводит к необходимости детального исследования взаимодействия пары "идентифицируемый объект" — "система идентификации" с целью выбора допустимых значений параметров системы идентификации. С другой стороны, это явление сильно ограничивает множество значений идентифицируемого параметра, для которого возможна успешная идентификация.

Этот недостаток обуславливается использованием функции качества $F(Q_o,Q_m)$ следующего вида:

$$F(Q_o, Q_m) = \exp\left(-\left(\frac{Q_o - Q_m}{q_\gamma}\right)^2\right). \tag{1}$$

Использование такого вида функции качества во многом обусловлено исторически. Применение адаптивно-поискового метода идентификации с одной моделью и одним УГПК [1] требовало ограничения диапазона рабочих частот собственно УГПК, и использование функции качества вида (1) (а точнее, вида $F(e) = \exp(-\gamma e^2)$) обеспечивало, с одной стороны, нормализацию функции качества, и, следовательно, ограниченность рабочих частот. С другой стороны, давало возможность управлять чувствительностью функции качества удобным образом.

При использовании двух и более моделей в системе идентификации не необходимости в наличии таких жёстких ограничений на частоты, и использование функции качества вида (1) неоправданно сужает рабочий диапазон поиска.

© А.И. Гуда, А.И. Михалев, 2013

В данной работе делается попытка уйти от такого вида функции качества. На данном этапе, побочным негативным результатом является отказ от использования УГПК, что что приводит как к отказу от некоторых из адаптивных свойств адаптивнопоисковой идентификации, так и ухудшению фильтрующих свойств системы. Тем не менее, для текущей задачи это несущественно.

Постановка задачи

Для исследования возможности расширения рабочего диапазона идентификации было принято решение заменить функцию качества (1) на квадратичную зависимость.

$$F(Q_o, Q_m) = (Q_o - Q_m)^2. (2)$$

Эта зависимость, в отличие от (1), имеет неограниченную сверху область значений. При этом, при равенстве величин Q_o и Q_m , наблюдается её минимум, а не максимум. Эта особенность не даёт возможности напрямую использовать УГПК. Тем не менее, в данном случае можно упростить систему, исключив генераторы с общим сбросом, и подав разностный сигнал ($F_l - F_r$) непосредственно на интегратор. Остальные элементы системы идентификации не претерпевают изменений

Структурная схема рассматриваемой системы идентификации представлена на рис. 1.

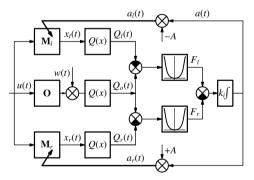


Рис. 1 – Система поисковой идентификации

Моделирование процессов идентификации

В качестве тестовой системы, для которой будет проводится идентификация, выбрана нелинейная динамическая система Лоренса:

ISSN 1560-8956 123

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$
 (3)

где x, y, z – переменные состояния системы, σ, r, b – параметры.

Как и работах [1,3], идентифицируемым параметром выбран r, определяющий вид динамики системы. Остальные параметры заданы следующим образом: $b=2.667,\,\sigma=10.$

В качестве критерия идентификации использован хорошо зарекомендовавший себя критерий вида

$$\frac{dQ}{dt} = \frac{1}{\tau} \left(x^2(t) - Q(t) \right). \tag{4}$$

Ошибку идентификации в пространстве параметров обозначим: $e_r=r_o-r_m$. Индекс "о" соответствует объекту, "m" — произвольной модели, "l" и "r" — соответственно "левой" и "правой" модели, " r_s " — начальное значение параметра при поиске.

На рис. 2 представлены результаты моделирования процесса идентификации при использовании системы с функцией качества вида (2) при различных значениях параметра k_i . Все остальные параметры системы, в том числе начальное и искомое значение r полностью совпадали с соответствующими значениями при проведения вычислительного эксперимента с использованием системы идентификации и двумя моделями и двумя УГПК.

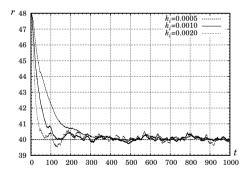


Рис. 2 — Процесс идентификации с использованием (2) при $r_s=48$ и $r_o=40$

Как и следовало ожидать, системы идентификации оказалась работоспособной, при этом меньшие значения k_i замедляют поиск, но позволяют уменьшить ошибку идентификации.

На рис. 3 представлены результаты моделирования процессов идентификации при использовании рассматриваемой и исходной системой идентификации. Параметры рассматриваемой системы

124 ISSN 1560-8956

были настроены таким образом, что бы обеспечить приблизительное равенство $t_i d$ при прочих равных.

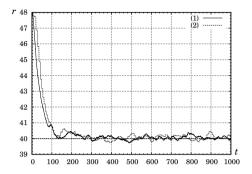


Рис. 3 — Процесс идентификации различными системами идентификации при $r_s=48,\,(1)$ — рассматриваемая, (2) — исходная системы

Следует отметить, что поведения систем идентификации в данных условиях качественно подобны. При этом, рассматриваемая системы демонстрирует большее количество верхних гармоник в поисковом сигнале параметра.

На рис. 4 представлены зависимости среднеквадратичного отклонения σ_{e_r} ошибки идентификации e_r в установившемся режиме от k_i при двух начальных точках $r_s=48$ и $r_s=60$, и ограниченном полном времени идентификации $T_t=1000$.

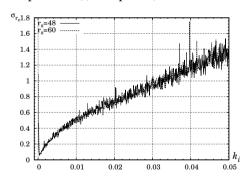


Рис. 4 – Зависимость $\sigma_{e_r}(k_i)$

Высокие значения величины $\sigma_{e_r}(k_i)$ при малых k_i обусловлены слишком малой скоростью идентификации — за время T_t режим ещё не установился. В дальнейшем величина σ_{e_r} растёт приблизительно пропорционально $\sqrt{k_i}$.

ISSN 1560-8956 125

На рис. 5 представлена зависимость времени идентификации t_{id} от k_i при фиксированных $r_s=48$ и $r_o=40$. Под временем идентификации подразумевается выход параметра в σ_{e_r} окрестность искомого значения.

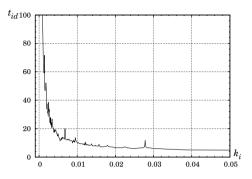


Рис. 5 – Зависимость $t_{id}(k_i)$

На рис. 6 представлены зависимости ошибки идентификации e_r при фиксированном полном времени моделирования $T_t=1000$ для рассматриваемой и исходной системах идентификации.

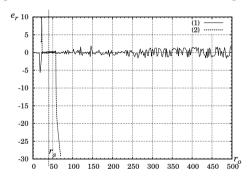


Рис. 6 – Ошибка идентификации при e_r при $r_s = 40$

Очевидно, что система идентификации с функцией качества вида (2) имеет диапазон параметра r, практически совпадающий с допустимым диапазоном этого параметра при моделировании системы Лоренса, независимо от того, наблюдается хаотический режим, или нет. Небольшой провал вблизи $r\approx 23$ связан с несинхронностью переключения моделей системы Лоренса в хаотический режим и обратно. Напротив, исходная система идентификации, как и было показано в [1], имеет достаточно ограниченный допустимый диапазон r.

126 ISSN 1560-8956

Выводы

Результаты проведённого моделирования и сравнение с существующими методами позволяют сделать следующие выводы:

- Система поисковой идентификации, созданная с использованием функции качества вида (2) обеспечивает значительное расширение диапазона поиска идентифицируемого параметра.
- Отсутствие адаптационных свойств рассматриваемой системы идентификации для тестовой идентифицируемой системы практически незаметно, что связано, по-видимому, с недостаточными адаптационными свойствами исходной системы идентификации.
- Структурная схема заметно упростилась, что положительно влияет на надёжность системы при её физической реализации.
- Худшие фильтрующие свойства критерия (4) по сравнению с УГПК приводят к большей доле верхних частот в сигнальном представлении идентифицируемого параметра

Библиографический список

- 1. Михалёв А.И., Гуда А.И. Настройка адаптивно-поисковой системы идентификации применительно к хаотическим объектам // Адаптивные системы автоматического управления. $2013. \mathbb{N} \ 1(22). \mathbb{C}. 134-139.$
 - Михалёв А.И. Адаптивно-поисковые методы и алгоритмы оптимизации и идентификации динамических систем. Киев: НМК ВО, 1992. 68 с.
- А.И. Гуда, А.И. Михалев Физические основы при синтезе критерия адаптивно-поисковой идентификации динамической системы Лоренса // Системні технології. Регіональний міжвузівський збірник наукових праць. Випуск 2(79). Дніпропетровськ, 2012. С. 13–10.
- 3. *Михалёв А.И., Гуда А.И., Новикова Е.Ю.* Синтез критерия идентификации нелинейных динамических систем на физических принципах // Адаптивные системы автоматического управления. 2007. № 11(31). С. 136–142.

Отримано 26.10.2013

ISSN 1560-8956 127