Глазева О.В., Дранкова А.О., Муха Н.И. ОНМА

МЕТОДЫ КОМПЕНСАЦИИ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ РАСХОДА ТЯЖЕЛОГО ТОПЛИВА ГЛАВНОГО ДВИГАТЕЛЯ

Вопросы комплексной автоматизации технологических процессов судовых энергетических систем на современном этапе развития морского флота являются основными с точки зрения обеспечения судов высокоэффективными энергетическими установками, отвечающими требованиям наибольшей экономичности и экологической чистоты. Обязательными компонентами судовых энергетических установок являются первичные измерительные преобразователи. В последнее время [1, 2] в судовых автоматизированных системах нашли применение пьезоэлектрические датчики давления и расхода различных жидких сред, в том числе и тяжелого топлива главного двигателя (ГД).

Такие свойства пьезокерамических элементов, как высокая надежность, прочность, устойчивость к действию магнитных и радиационных излучений, химическая нейтральность, определяют целесообразность их использования в судостроительной промышленности. Однако, наряду с этими положительными качествами, пьезоэлементы обладают существенными нелинейными характеристиками, связанными с пьезоэлектрическим гистерезисом, остаточной деформацией, зависимостью параметров пьезоэлементов от термодинамических свойств потоков жидкости. До настоящего времени в таких датчиках не реализованы в полной мере функции коррекции статических и динамических погрешностей измерений давления, в том числе вызванных изменениями термодинамических параметров среды [3]. Современная микроконтроллерная техника обеспечивает введение алгоритмов динамической коррекции.

Одним из вариантов конструкций пьезокерамических элементов, предназначенных для использования в приборостроении и автоматике, является биморфный пьезоэлектрический элемент (БПЭ) [4].

В связи с изложенным предлагается пьезоэлектрический преобразователь давления, который позволяет определить скорость потока, а, следовательно, и расход тяжелого топлива, по величине гидродинамического давления, оказываемого жидкой средой на него. БПЭ, работая в трансформаторном режиме, помещается непосредственно в поток, а амплитуда напряжения U_2 , пропорциональная гидродинамическому давлению является информативным параметром преобразователя (рис. 1).

Рис.1. Влияние гидродинамического давления на БПЭ расходомера

Основными источниками погрешностей измерений расхода жидкостей являются изменения физико-химических параметров контролируемой среды (температура, плотность, вязкость). Так, в работе [5] было предложено несколько решений, позволяющих повысить достоверность измерений расхода.

На рис. 2 представлена структурная схема расходомера с температурной коррекцией параметров жидкостных потоков.

Рис. 2. Пьезоэлектрический расходомер с температурной коррекцией: 1 – поток жидкости; 2 – фланцы; 3 – резиновая прокладка; 4 – корпус; 5 – биморфный пьезоэлемент; 6 – держатель БПЭ; 7 – термодатчик; 8 – генератор; 9 – усилитель; 10 – микропроцессорное устройство обработки информации; 11 – устройство отображения

Расходомер встраивается в технологический трубопровод, поток жилкости взаимодействует с колеблюшимся БПЭ. Амплитуда трансформируемого электрического напряжения является мерой гидродинамического давления жидкости. Информативный сигнал, после предварительного усиления, поступает на микропроцессорное устройство, где обрабатывается по определенному алгоритму, в котором предусмотрена коррекция температурной погрешности путем внесения соответствующей поправки в результаты измерений на основе базы данных об изменениях амплитуды сигнала БПЭ. Измерительные погрешности пьезоэлектрического расходомера заметно снижаются в том случае, если разместить два БПЭ в одной плоскости, например в вертикальной, вдоль потока в трубопроводе (рис. 3) [6]. Поскольку амплитуда колебаний зависит от направления обтекания средой колеблюшегося БПЭ. то выходной сигнал первого БПЭ будет увеличиваться, а второго – уменьшаться. При подаче выходих сигналов на дифференциальный усилитель, влияние температуры среды на показания расходомера уменьшаются. Кроме того, изменения плотности и динамической вязкости жидкой среды оказывают одинаковое влияние на параметры колебаний двух БПЭ, что также повышает точность измерения расходов.

Рис. 3. Пьезоэлектронный расходомер жидких сред с двумя БПЭ: 1 – первый биморфный пьезоэлемент; 2 – второй биморфный пьезоэлемент; 3 – первичный пьезоэлемент первого БПП; 4 – вторичный пьезоэлемент первого БПП; 5 – первичный пьезоэлемент второго БПП; 6 – вторичный пьезоэлемент второго БПП; 7, 8 – общий электрический вывод биморфных пьезоэлементов; 9 – генератор; 10 – дифференциальный усилитель; 11 – устройство усиления обработки и регистрации информации

В случае неоднородного поля скоростей потока два БПЭ следует размещать в двух взаимно перпендикулярных плоскостях [7]. Так на рис. 4 приведена структурная схема подобного расходомера.

Рис. 4. Пьезоэлектронный расходомер жидких сред: 1 – генератор; 2 – устройство усиления, обработки и регистрации информации; 3 – первичный пьезоэлемент первого БПП; 4 – вторичный пьезоэлемент первого БПП; 5 – первичный пьезоэлемент второго БПП; 6 – вторичный пьезоэлемент второго БПП

Компенсация нелинейностей измерений в вышеизложенных способах осуществляется за счет дополнительных технических решений.

Одним из возможных способов линеаризации замкнутого контура регулирования расхода тяжелого топлива, использующего пьезоэлектрические первичные преобразователи, является введение в контур управления нелинейной зависимости, компенсирующей исходную нелинейность. Для решения такой задачи требуется микропроцессорная аппроксимация градуировочных характеристик (ГХ), основанная на построении модели, описывающей соотношение «вход-выход» измерительного преобразователя [8].

В качестве исходных данных для аппроксимации ГХ используются экспериментально полученные зависимости U = f(P) пьезопреобразователя в виде равнобедренной трапеции с основанием 15 мм и высотой 20 мм для частоты 619 Гц (табл.).

Таблица

Напряжение <i>U</i> , мВ	228	235	238	244	252	251	254
Давление р, Па	0	143,6	237	323	408,8	531,2	724,9

Экспериментальные данные для построения ГХ

Наиболее простым способом аппроксимации данных, является аппроксимация, при которой значение в каждой промежуточной точке принимается равным ближайшему значению, заданному в таблице (аппроксимация по соседним элементам). Линейная аппроксимация приводит к соединению соседних точек отрезками прямых согласно соответствующих табличным данным [9]. Как видно из рис. 5, оба способа аппроксимаций дают очень приближенные результаты.

Рис. 5. Линейная аппроксимация ГХ: о -экспериментальные данные; ----- - линейная аппроксимация; — - - - - - аппроксимация по средним точкам

Традиционно для аппроксимации нелинейных зависимостей такого типа используется приближение методом наименьших квадратов [9]. На рис. 6 представлен результат аппроксимации полиномами второй, четвертой и пятой степенями.

Проведенная аппроксимация показывает, что приближение методом наименьших квадратов не всегда дает хороший результат. Кроме того, при увеличении степени полинома возможно ухудшение приближения (происходит при *n*, равном пяти).

Обычно при аппроксимации таблично заданной функции для получения плавного перехода от одного значения к другому применяются сплайны [9]. Результат сплайн-аппроксимации показан на рис. 7.

Рис. 6. Полиномиальная аппроксимация ГХ: о - экспериментальные данные; ---- - - аппроксимация полиномом пятой степени; ---- - аппроксимация полиномом четвертой степени; ----- - аппроксимация полиномом второй степени

Рис. 7. Сплайн-аппроксимация ГХ: о - экспериментальные данные; — - сплайн-аппроксимация

В исследовании применен нейросетевой метод аппроксимации ГХ пьезоэлектрических датчиков давления тяжелого топлива ГД, ранее не использовавшийся для решения подобных задач в метрологическом обеспечении. Выбор данного метода основан на том, что любую функцию многих переменных можно представить двухслойной нейронной сетью с прямыми связями с n нейронами входного слоя, N=2n+1 нейронами скрытого слоя, m нейронами выходного слоя и заранее заданными функциями активации f, функции активации должны быть непрерывными и дифференцируемыми в области определения [10].

Для решения поставленной задачи был построен многослойный персептрон (рис. 8) с прямыми связями и одним скрытым слоем типа (2–*N*–1).

Рис. 8. Архитектура многослойного персептрона

Функцией активации нейронов скрытого слоя выбран гиперболический тангенс, а выходного нейрона – линейная функция без смещения:

$$tansig(n) = \frac{2}{1 + e^{-2n}} - 1;$$

purelin(n) = n.

Обучение персептрона проводилось при помощи алгоритма градиентного спуска и алгоритма Левенберга-Марквардта (рис. 9).

В результате моделирования было установлено, что оба алгоритма обеспечивают стабильное снижение заданной ошибки аппроксимации, но последний алгоритм являются более быстродействующим.

Количество нейронов скрытого слоя подбиралось экспериментально и зависело от размерности входного вектора и степени нелинейности ГХ датчика. Наилучшие результаты получены при количестве нейронов в скрытом слое 55 (алгоритм обучения GDX) и 40 (алгоритм обучения LM).

Результат нейросетевой аппроксимации показан на рис. 10.

Статистическая оценка среднеквадратической погрешности рассмотренных методов: линейная – 5,18; полиномиальная – 1,61; сплайн – 0,96; нейросетевая – 0,24.

Рис. 9. Графики обучения многослойного персептрона: *a* - обучение по алгоритму градиентного спуска (GDX), *б* – обучение по алгоритму Левенберга-Марквардта (LM)

Анализ численных значений погрешности показал, что нейросетевой метод обеспечивает значительное повышении точности аппроксимации ГХ пьезоэлектрического датчика давления тяжелого топлива ГД.

Таким образом, комплексное применение программно-аппаратных методов позволяет проводить динамическую коррекцию погрешности измерений расхода тяжелого топлива главного двигателя. Наиболее перспективным является нейросетевой метод, технически реализуемый на нейропроцессоре Л1879BM1 (NeuroMatrix NM6403) со встро-енными алгоритмами обучения и моделирования.

Рис. 10. Нейросетевая аппроксимация ГХ: о - экспериментальные данные; — - нейросетевая аппроксимация

СПИСОК ЛИТЕРАТУРЫ

1. Толшин В.И., Сизых В.А. Автоматизация судовых энергетических установок. учебник. – М.: РосКонсульт. – 2003. – 304 с.

2. Беляев И.Г., Курзенков Н.Г., Седых В.И., Слесаренко В.Н. Автоматизация процессов в судовой энергетике: учебник для вузов. – Владивосток. – 1999. – 453 с.

3. Джагупов Р.Г., Ерофеев А.А. Пьезоэлектронные устройства вычислительной техники, систем контроля и управления: справочник. – СПб: Политехника, 1994. – 608 с.

4. Шарапов В.М., Мусиенко М.П., Шарапова Е.В. Пьезокерамические преобразователи физических величин /Под ред. В.М. Шарапова. -Черкассы: ЧГТУ, 2005. – 631 с.

5. Глазева О.В. Белокопытный А.С., Плавинский Е.Б. Пьезоэлектроный расходомер газовых потоков // Холодильная техника и технология – 2000. – Вып. 68. – С. 65 - 66.

6. Пат. 34149А Україна, МПК7 G 01 F 3/12 П'єзоелектронний витратомір рідких та газоподібних середовищ / Глазєва О.В., Плавинський Є.Б.; ОДПУ – № 99063164. Заявл. 09.06.1999. Опубл. 15.02.2001.

7. Пат. 41109А Україна, МПК7 G 01 F 3/12 П'єзоелектронний витратомір рідких та газоподібних середовищ / Глазєва О.В., Плавинський Є.Б.; ОДПУ – № 2001020966. Заявл. 13.02.2001. Опубл. 15.08.2001.

8. Глазева О.В., Плавинский Е.Б. Моделирование функции преобразования пьезоэлектрических датчиков гидродинамических давлений // Холодильна техніка і технологія. – 1999. – №61. – С. 17 - 20.

9. Дьяконов В.П. МАТLАВ 6/6.1/6.5 + Simulink 4/5. Основы применения. Полное руководство пользователя. – М.: СОЛОН-Пресс. – 2002. – 768 с.

10. Хайкин С. Нейронные сети: полный курс. 2-е издание. Пер. с англ. – М.: Издательский дом "Вильямс", 2006. - 1104 с.