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NONLINEAR DYNAMICS OF A ROTOR WITH CANTILEVERED DISK RESTING 
ON ANGULAR CONTACT BALL BEARINGS 

 
S. Filipkovskyi, Assoc. Prof., Ph. D. (Eng.),  

Kharkоv National Automobile and Highway University 
 

Abstract. The mathematical model of nonlinear oscillations of the rotor resting on angular contact 
ball bearings is developed. The disc is fixed on the console end of the shaft. The deflection of the shaft, 
and the elastic deformation of the bearings have the same order. Analysis of free oscillations is car-
ried out, using nonlinear normal modes. The modes and backbone curves of rotor nonlinear oscilla-
tions are calculated. The system has soft characteristics.  
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НЕЛИНЕЙНАЯ ДИНАМИКА РОТОРА С КОНСОЛЬНО ЗАКРЕПЛЁННЫМ 

ДИСКОМ НА РАДИАЛЬНО-УПОРНЫХ ШАРИКОПОДШИПНИКАХ 
 

С.В. Филипковский, доц., к.т.н.,  
Харьковский национальный автомобильно-дорожный университет 

 
Аннотация. Получена математическая модель нелинейных колебаний ротора на радиально-
упорных шарикоподшипниках. Диск закреплён на консольном конце вала. Прогибы вала одного 
порядка с упругими деформациями подшипников. Анализ свободных колебаний выполнен мето-
дом нелинейных нормальных форм. Рассчитаны формы и скелетные кривые колебаний ротора.  
 
Ключевые слова: ротор, шарикоподшипник, колебания, нелинейные нормальные формы, ске-
летные кривые. 
 
НЕЛІНІЙНА ДИНАМІКА РОТОРА З КОНСОЛЬНО ЗАКРІПЛЕНИМ ДИСКОМ  

НА РАДІАЛЬНО-УПОРНИХ ШАРИКОПІДШИПНИКАХ 
 

С.В. Філіпковський, доц., к.т.н.,  
Харківський національний автомобільно-дорожній університет 

 
Анотація. Отримано математичну модель нелінійних коливань ротора на радіально-упорних 
шарикопідшипниках. Диск закріплено на консольному кінці вала. Прогини вала одного порядку із 
пружними деформаціями підшипників. Аналіз вільних коливань виконано методом нелінійних 
нормальних форм. Розраховано форми і скелетні криві коливань. 
 
Ключові слова: ротор, шарикопідшипник, коливання, нелінійні нормальні форми, скелетні криві. 

 
 

Introduction 
 
Analysis of nonlinear dynamics of machines 
allows predicting destructive oscillations in 
conditions, which are safe from the point of 
view of the linear model of the system, and due 
to more precise definition to reduce their materi-
als consumption and terms of design. Practical-
ly, all vehicles contain rotors supported by non-
linear bearings. Nonlinearity of ball-bearings is 

caused by clearances between the balls and rac-
es, and the nonlinear dependence of defor-
mations on contact forces. Nonlinear analysis of 
rotors on ball-bearings with clearances are in-
vestigated in articles [1,2,3]. Closing of the radi-
al internal clearance in ball-bearings causes 
shock loads and excessive vibrations. In order to 
reduce them, axial preload of ball bearing are 
used. Nonlinear dynamics of such rotors is in-
vestigated in papers [4, 5]. 
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In the majority of works, the oscillations of ro-
tors in which one disk is in the middle between 
the supports are considered, and oscillations are 
caused by unbalance or bearings defects. In such 
models, the deformed shaft center line is ap-
proximated by the harmonic functions as a rule. 
In many machines the rotor resting on axial pre-
loaded angular contact ball-bearings has a disk 
on the console end, and the bearings are mount-
ed on the vibrating basis. Using such a model it 
is possible to provide the rotors of helicopter 
turbines which are used as engines of dump 
trucks, or electric motors with impellers of 
pumps which are used in other vehicles. 
 

Problem formulation 
 
Influence of vibration of the basis on nonlinear 
dynamics of a rotor, which has a disk on console 
part of a shaft, supported by ball-bearings is in-
sufficient investigated. Therefore the problems 
of creation of mathematical model and devel-
opment of technique to research oscillations of a 
rotor on axial preloaded angular contact ball-
bearings, and also the analysis of dynamics of a 
rotor when the frequency of its rotation is in fre-
quency band of vibration of the basis are solved. 
 

Equations of rotor oscillations 
 
For the rotor of such a structure it is difficult to 
apply harmonic functions, therefore we use the 
finite element method for approximation of a 
deformed shaft. The design model of a rotor is 
presented in fig. 1. Finite elements approximate 
the sites of a shaft of a constant section. Disks 
and supports are placed in nodes. Numbers of 
nodal sections are denoted in fig. 1 by digits 1–5. 
We consider the forces and the moments of 
forces of inertia of a disk, and also the contact 
forces arising in bearings as boundary condi-
tions in the corresponding nodes. 
 
Free oscillations of a shaft of constant section 
are described by the following equations [6] 
 

,02

2

4

4 



t
uFuEI xx  

4 2

4 2 0,y yu u
EI F

t
                  (1) 

 
where I and F – are the second moment of area 
and the area of the shaft, respectively, E and  – 
are Young’s modulus and the mass density of 
the shaft, respectively. 

 
 

Fig. 1. Finite elements of a rotor and nodes on 
the ends of elements (1–5) 

 
Coordinate axes are directed, as it is shown in 
Fig. 1. Generalized coordinates which are the 
components of a vector of nodal displacements 
of a node i are the following sequence xii uu ,1,  , 

yiiu ,2,  , yii uu ,3,  , xiiu ,4,  , zii uu ,5,  . In-
terpolation polynoms of finite element are the 
functions of a bending line of a beam at single 
movements of nodal sections [7] 
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where l is the element length, ζ is the coordinate 
along an element axis. Deflections of finite  
element between nodes 1, ii  are determined 
by polynoms 
 

,2,14,1,13,2,2,1,1,   ieieieiey uNuNuNuNu  
 

.4,14,3,13,4,2,3,1,   ieieieiey uNuNuNuNu (3) 
 
Values ziu ,  depend only on time, because the 
shaft is not deformed along a rotation axis. 
 
The equations of oscillations of a shaft are ob-
tained by Galerkin's method at simultaneous 
approximation of both the equations and bound-
ary conditions [8] 
   

  ,0dRWdRW ee           (4) 
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where R  is a residual of the solution of the 
equation; R  is a residual in boundary condi-
tions; eW  and eW  are the weight functions in the 
area and on border, respectively; e is a number 
of finite element. As weight functions in this 
method we take interpolation polynoms 

ee NW  . 
 
If expressions (1), (2) and (3) substituted into 
the first integral (4) we receive the following 
integrals longwise of an element 
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Carrying out in (5) integration by parts for 
terms, which containing derivatives on coordi-
nate ζ, we receive 
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where  eK  is a stiffness matrix of finite ele-
ment. Carrying out in (5) integration for terms 
with derivatives on time we receive 
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where  eM  is a matrix of mass of finite ele-
ment. The components of lines and columns of 
matrixes corresponding to movement zu will be 
zero because the shaft is not deformed along a 
rotation axis, except a diagonal component of a 
matrix of masses which is equal to the mass of 
finite element. 

The first boundary condition on the end of a 
shaft with a disk is equality of the bending mo-
ment to the moment of forces of inertia of a disk 
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where I1 and I0 are the diametrical and polar 
moments of inertia of a disk, respectively,  is 
an angular speed of rotor. If expressions (2), (3), 
(8) and 0  substituted into the second inte-
gral (4) we receive an additive to a matrix of 
masses  1IM  and a gyroscopic matrix  1G  for 
degrees of freedom of the corresponding node  
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The second boundary condition on the end of a 
shaft with a disk is equality of lateral force to 
force of inertia of a disk 
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where m0 is the mass of a disk. If expressions 
(2), (3), (11) and 0  substituted into the se-
cond integral (4), we receive an additive to a 
matrix of masses  1mM  
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If the disk is fixed on a shaft with eccentricity a, 
then equations (11) must change so 
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If expressions (2), (3), (13) and 0  substitut-
ed into the second integral (4) we receive a 
right-hand vector of the equations of oscillations   tH D ,  which is caused by a disk unbalance 
besides the matrix  1mM  
      0sin0cos, 2

0 ttamtH D . (14) 
 

For the node which is fixed in the bearing, 
boundary conditions on axes yx,  are 
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where ixP , and iyP ,  are functions of bearing re-
storing forces which are received in paper [9]. If 
expressions (2), (3), (15) and 0 , in case of 
the left node of an element, or l , in case of 
the right node of an element, substituted into the 
second integral (4) we receive a vector function 
of the bearing restoring forces 
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If the rotor is mounted on the vibrating base, the 
vector of kinematic excitation of oscillations is 
added on the right side of equation [10] 
        tAMtH ,,   ,           (17) 

 
where  M  is a matrix of masses,   tA ,  is a 
vector of vibration accelerations of support,  

ω is the angular frequency of vibration of sup-
port. Damping forces are concentrated in bear-
ings. Therefore the vector of damping forces has 
the same structure as the vector   UK . In 
this paper we accept model of viscous damping, 
then coefficients of damping matrix  C  placed 
on its diagonal in the same lines as similar com-
ponent of the vector   UK . Assembling the 
matrixes which received on formulas (6), (7), 
(9), (10), (12) and vectors (14), (16), (17) we 
receive the equation of oscillations.  
                    .,, tHtHUK
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Analysis of free oscillations of a rotor 

 
The equation of free oscillations without damp-
ing has a form 
             0  UKUKUGUM  . (19) 
 
To analyse free oscillations, we use the method 
of nonlinear normal modes, which allows to 
transform the analysis of finite degree of free-
doms system to the analysis of single degree of 
freedom oscillator [9, 11]. 
 
Multiply (19) by   1M and write the vector of 
generalized velocities    UV   we receive the 
first order system of equations 
            0U  KUKVGV ,  (20) 
 
where      GGM 1 ,      KKM 1 ,        UKUKM  1 . 
 
We write all phase coordinates as the functions 
of one pair of phase coordinates which can be 
chosen arbitrary [11] 
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where p is displacement and pq   is velocity. 
We can express the components of vector func-
tions      ppqpP ,...,, 1  and      qqqpQ ,...,, 1 in the form of a Taylor 
series: 
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where  ,...,,J,...,J-n 111  are numbers of de-
gree of freedoms, J is number of the chosen 
basic generalized coordinate, Jpp  , Jqq  . 
 
For determination of coefficients of power series 
(22) we take derivatives of components of vec-
tor functions (21): 
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We can express a component of any line of a 
vector    UV    in a formula (20) as a function 
of the chosen pair of phase coordinates. Taking 
into account series (22) we can write this func-
tion in the form: 
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At the same time this function is the left side of 
the second formula (23). If expression (24) sub-
stituted into (23) the following equations are 
obtained 
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Gathering terms of like powers in p and q we 
receive system of algebraic equations for defini-
tion of coefficients mn,  [11]. 
 

We substitute the calculated coefficients mn,  
into that equation of system (20) which phase 
coordinates are chosen as p and q. Executing 
transformations we receive one differential 
equation of the movement on the chosen vibra-
tion mode: 
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The equation (26) is solved by method of har-
monious balance. 
 

Results of numerical researches 
 
Rotor parameters are as follows: L = 0.34 m is a 
shaft length; l = 0.06 m is a length of the console 
end; d1 = 0.025 m is a diameter of the console 
end of a shaft; d2 = 0.025 m is a diameter of a 
shaft between supports; E = 2.1·1011 Pa and  = 0.3; m = 5.0 kg, Ix = 0.1 kgm2, 
Iz = 0.2 kgm2; fΩ = Ω/2π = 50 Hz is a rotation 
frequency of a rotor. The standard angular con-
tact ball-bearing parameters are as follows: 
α = 15° is contact angle; R2 = 27.525 mm is the 
radius of outer race; R1 = 16.000 mm is the radius 
of inner race; RK = 5.930 mm is the race radius of 
curvature; dB = 11.510 mm is diameter of a ball; 
ΝB = 7 is number of balls; E = 2,1·1011 Pa;  = 0,3. 
 
Frequencies of transverse oscillations of the lin-
earized system are 70,54 Hz, 110,63 Hz, 
196,22 Hz and 202,11 Hz. Frequency of longi-
tudinal oscillations of the linearized system is 
101,70 Hz. Backbone curves of a rotor are 
shown in fig. 2.  
 

 
 

Fig. 2. Backbone curves of a rotor 
 
The system has soft characteristics. Curves 1 
and 2 correspond to oscillations in the funda-
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mental mode. With a bigger frequency the 
curved shaft axle rotates in the direction of shaft 
rotation, and with a smaller frequency in oppo-
site direction. Curves 3 and 4 correspond to sim-
ilar oscillations in the second mode. 
 
The fundamental mode of an elastic shaft axle at 
transverse oscillations when frequency is near 
110 Hz is shown in fig. 3 (corresponds to curve 
2 in fig. 2).  
 

 
 

Fig. 3. Fundamental mode of shaft oscillations 
 
At oscillations in the fundamental mode the 
shaft spindles are from the opposite sides from 
an axis of bearings. The mode of an elastic shaft 
axle when frequency is near 202 Hz is shown in 
fig. 4 (corresponds to curve 4 in fig. 2). In this 
case the shaft spindles are on the same side from 
an axis of bearings. 
 

 
Fig. 4. Second mode of shaft oscillations 

 
Conclusions 

 
Oscillations of a rotor supported by the preloaded 
angular contact ball bearings are investigated. The 
disk is fixed on the console end of a shaft. Back-
bone curves and non-linear normal modes by 
Shaw and Pierre are obtained. The system has 

soft characteristics. Resonant oscillations can oc-
cur throughout the whole frequency range below 
the principal resonance frequency. 
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