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Abstract 

Numerous articles use the Markowitz mean-variance approach for computing the capital asset pricing model (CAPM) 
and to determine the best set of assets an investor should hold. But using a symmetric risk measure is not necessarily 
straightforward in the mind of many investors. Many other approaches to determine a portfolio composition, e.g. faith 
or other behavioral determinants, appear more natural. Especially an asymmetric downside risk approach is more ap-
pealing to many investors. This work investigates the differences between portfolios based on a symmetric and on an 
asymmetric risk measure. Based on the Behavioral Portfolio Theory (BTP) model by Shefrin and Statman and the 
Markowitz classical portfolio approach the authors compare portfolios composed by stocks of the French SBR 120 
market over a period of 6 years. Simulation of 100,000 virtual portfolios over the study period shows that there are 
only minor differences between portfolios obtained by downside or symmetric risk. Therefore, the results leave room 
for taking into consideration other choice criteria to complete the approach, such as the computing power if an investor 
wants to use much more demanding downside risk methodology or faith bases selection criteria to pick the assets.  
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Introduction© 

The definition of risk, its measure and the implica-
tion it has on the investor’s behavior have been at 
the core of managerial finance from the very begin-
ning. Early research efforts on how investors facing 
risk allocated their capital across different assets 
culminated in two groundbreaking papers on the 
definition and measure of risk in portfolio analysis, 
Markowitz (1952) and Roy (1952), which marked 
the emergence of finance as a separate discipline. 
The former suggested that variance is used as a 
proxy for risk while the latter recognized the impor-
tance of downside risk in the investor’s decision 
making. Mainly because of its computational con-
venience, variance, along with standard deviation, 
quickly became widely accepted as a measure of 
risk in the mainstream of finance literature. More 
recently the behavioral finance approach pinpointed 
the fact that the use of such a measure is not 
straightforward for all investors. As defined by De 
Bondt et al. (2008) behavioral finance is about the 
study of how the psychology of investors influences 
their financial decisions whether this specific psy-
chology is influenced by the environment, personal 
factors, culture, faith or any other factors. Thereby 
the psychology of the investor can influence the se-
lection of the risk measure (asymmetric of symme-
tric) leading to the building of a portfolio. This point 
can be problematic when the use of one risk measure 
leads to a different portfolio selection than the other. 
As a matter of fact variance minimization is coun-
ter-intuitive as it entails punishment both for low 
and high returns equally. The more intuitive down-
side risk measure did not take off for a few decades 
due to its computational complexity. With the ad-
vancement of computing technology and the exten-
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sive growth of the financial derivatives industry the 
appeal of using downside risk measures has gained 
ground. The increase in computation power makes 
the question of the selection of assets for a portfolio 
depending on the two risk definition relevant and 
answerable. If the two approaches deliver the same 
result there is, on the one hand, no reason to employ 
the more costly method (from a computational point 
of view) nor, on the other hand, any reason to force 
investors to make their choices based on counterin-
tuitive risk modelling which can lead to a non ra-
tional behavior. Surprisingly, empirical investiga-
tion of this issue has so far received very little atten-
tion in the literature. This paper aims to contribute 
to the literature by offering a comparative analysis 
of portfolio choices under the two risk concepts. 
Since efficient frontier plays a critical role in the 
selection of optimal portfolios in this study we spe-
cifically focus on the implications of two risk meas-
ures on the efficient market frontier. 

Using the data from the French stock market, we 
compare optimal portfolios of two different inves-
tors that use the downside and symmetric risk meas-
ures. While for a symmetric risk investor we employ 
the seminal mean-variance model of Markowitz 
(1952), for a downside risk investor we rely on the 
model of Shefrin and Statman (2000). Those authors 
developed a Behavioral Portfolio Theory (BPT) 
where an investor seeks to maximize his expected 
return subject to the probability of ruin being no 
greater than a given critical level. Shefrin and Stat-
man (2000) claim that in contrast to the capital asset 
pricing model (CAPM), that uses symmetric va-
riance to account for risk, in equilibrium investors 
hold a portfolio that resembles a combination of 
bonds and a lottery ticket. Thus, according to BPT, 
investors deviate from the optimal portfolio diversi-
fication of Markowitz, and consider their portfolios 
as a pyramid of assets with riskless instruments in 
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the bottom layer and risky equity in the top layer 
(this idea was earlier articulated by Fisher and Stat-
man (1997) among others). 

Our paper is related to a small set of empirical pa-
pers that compare portfolio choices under downside 
and symmetric risk frameworks. Harlow (1991) and 
Alexander and Baptista (2002) demonstrate that if 
return distributions are normal, the difference be-
tween the optimal portfolio choices of a symmetric-
risk and downside-risk investors will be small. Jar-
row and Zhao (2006) show that when asset returns 
are almost normally distributed investors using va-
riance and lower partial moment to measure risk 
choose similar portfolios (Galagedera, 2007) for an 
extensive review of portfolio selection models and 
CAPM). When asset returns are non-normal with 
large left tails they obtain the opposite result. How-
ever, numerous empirical studies carried out for 
different markets and for different periods confirm 
that the real returns are not normal (Mandelbrot, 
1963; Brenner, 1974; Jorion, 1988). In line with 
these empirical studies, our simulations are insensi-
tive to return distributions. 

By simulating portfolio choices under two risk con-
cepts we find that the optimal portfolio constructed 
by a downside risk-averse investor belongs to the 
mean-variance efficient frontier. This specific portfo-
lio has been constructed under constraints that can be 
seen as the willingness for an investor under limited 
rationality to choose a limited number of assets or to 
pick up the assets following different criteria (includ-
ing the downside risk, but not limited to this aspect).  

The rest of the paper is structured as follows. The 
next section discusses the portfolio theory of the 
downside risk investor in the context of the BPT in 
contrast to the symmetric risk investor in mean-
variance framework. Then the dataset used, the me-
thodology and the results are exposed. The final 
section concludes the paper. 

1. The model 

To model the portfolio choice of a downside risk 
investor we rely on Shefrin and Statman (2000). To 
define risk Shefrin and Statman (2000) draw on 
Roy’s (1952) concept of safety first approach. Ac-
cording to this concept an investor is characterized 
by a subsistence level of wealth. The investor is 
considered “ruined” if his terminal wealth falls be-
low this exogenously given level. Thus, the investor 
seeks to minimize the probability of failure. Telser 
(1955) goes one step further and introduces an ac-
ceptable level for the ruin probability such that the 
portfolio is considered “safe” if the probability of 
failure does not exceed this specified level. Arzac 
and Bawa (1977) extend Telser’s model by consi-
dering an investor whose objective function depends 

on the expected terminal wealth under this ruin 
probability. These older results serve as the basis for 
Shefrin and Statman’s (2000) Behavioral Portfolio 
Theory a simplified exposition of which we present 
in the following section. 

In this model there are n states of nature, w 
represents the wealth of the investor, w1,... wn each 
occurring with the probability pi, i = 1,...,n respec-
tively. The payoff from an asset is 1 if wi occurs and 
0 otherwise. The price of each asset is known and 
denoted by πi. We suppose that states are ordered so 
that state prices per unit probability πi./pi are mono-
tonically decreasing in i. At date zero, the investor 
chooses a portfolio composed of the contingent 
claims that maximize his expected terminal wealth 
subject to his budget constraint. A mean-variance 
investor with a quadratic utility function thus solves 
the following program where b is a constant: 
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A behavioral investor at date 1 maximizes is ex-
pected terminal wealth subject to the safety-first 
constraint in addition to the budget constraint, so the 
optimization program of a BPT investor is defined as: 

( ) ( ) 0max . . and ,i iE W s t P W A W Wα π< ≤ ≤∑    (3) 

where A is the aspiration level and α is the maxi-
mum probability of failure. Both A and α are private 
characteristics of the investor, also called security 
parameters. Thus, the agent seeks to maximize the 
expected wealth in a particular set of portfolios that 
meet the security constraint. W~  denotes the future 
wealth distribution and takes the value Wi, i = 1,...,n, 
if wi occurs. An analytical solution to the maximiza-
tion program of the BPT investor may not exist. 
However, we can show the portfolio choice of a 
BPT investor with a simple numerical example fol-
lowing Shefrin and Statman (2000). To do so, let us 
consider an economy with 8 states of nature, the 
arbitrary prices of which are given in Table 1. 

Table 1. An example of state price 
 1 2 3 4 5 6 7 8 

πi / pi 0.37 0.19 0.12 0.09 0.07 0.06 0.05 0.04 

For the sake of simplicity let us suppose that the 
probability is uniformly distributed: p1 = p2 = ... = 
p8. The distribution for the optimal portfolio as a 
function of the realized state at date 1 given W0 = 1 
(the agent invests 1 at date 0) is shown in Figure 1 
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both for Markowitz and Shefrin-Statman investors. 
In this example, both have the same expected return 
on their portfolios, but the latter is also characte-
rized with α = 0,25 and A = 2. We observe that a 
Markowitz investor invests in each individual asset 

to lower its risk while the Shefrin-Statman does not. 
In the Shefrin-Statman case, this payoff pattern can 
be described as the combination of payoffs from a 
portfolio consisting of a bond and a lottery ticket 
that payoff only in state 8. 
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Fig. 1. Optimal portfolios payoff 

Shefrin and Statman (2000) show that efficient solu-
tions of the behavioral portfolio problem are typical-
ly non mean-variance efficient. The idea is that an 
investor who perceives risk as the downside devia-
tion from the expectation makes two distinct in-
vestment decisions. First, the investor seeks to 
create a portfolio satisfying the safety-first criteria 
for his level of capital at the lowest possible level of 
required investment, i.e. at the cheapest price. 
Second, if the budget constraint is not satiated he 
allocates the remaining investment capital to the 
asset with the highest expected payoff. In the exam-
ple above, for his initial wealth W0 = 1 the investor 
proceeds in two simultaneous steps. He starts out by 
investing in the assets with the lowest ratio ( πi./pi ) 
in order to ensure terminal value of the portfolio at 
date 1 at the level A = 2 in 75% of states of nature. In 
our example, he invests in the 6 cheapest assets. This 
strategy enables him to meet the security constraint 
with the lowest cost. This is why the payoffs in states 
1 and 2 are zero. Then, he invests all the rest of the 
initial wealth in the cheapest available asset. 

Thus, the composition of the resulting optimal port-
folio of a downside risk investor differs from that of 
a mean-variance investor who simply allocates all the 
capital to the portfolio with a minimum level of va-
riance for a given level of expected return. This hypo-
thesis is the object of our tests in the following section.  

2. Data 

To collect the data, we consider stocks that composed 
the SBF120 French Index over the period from June 
2001 to June 2007. Stock price observations were 
obtained from the database maintained by Fininfo, a 
French financial market data provider. At the begin-
ning of that period the index included 119 assets (as of 

June 1, 2001). To preserve continuity, of these 119 
assets we eliminated the ones with incomplete data. 
Incompleteness of the data resulted from the exclusion 
of some individual stocks from the index over the 
period under consideration. Incomplete data were also 
observed for assets with missing observations and 
such assets were also eliminated. As a result we were 
left with 71 assets in the final sample, as opposed to 
the initial 119, with daily observations over 1535 days.  

Using these 71 stocks we computed 1534 daily stock 
returns. The main descriptive statistics are given in 
Table 2. To test for normality we resorted to the Jar-
que-Bera test which reveals departure from normality. 
The Markowitz model was initially built for normality 
satisfying distribution of returns. However several 
works underlined the practical and empirical relev-
ance of employing non normal distribution. Galage-
dera (2007) reviews these situations when researchers 
pay more attention to third and fourth moments 
(skewness and kurtosis). This author reports that 
investors often compensate the higher risk of such a 
distribution by expecting higher returns and that 
skewness and kurtosis cannot be satisfyingly diversi-
fied by increasing the size of the portfolio. Therefore 
part of our later results could be explained by the type 
of distribution, but do not make the use of the CAPM 
model unfounded. 

Table 2. Descriptive statistics 
 Mean St. dev. Skewness Kurtosis 

Max 1.9735 26.5 10.78 298.24 
Min -1.4493 13.3 -2.56 5.55 
Average 0.1896 21.8 0.05 16.22 

Several works in the behavioral finance literature 
question the practical relevance of an efficient port-
folio composed of a huge number of assets. Asking 
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the question of the number of different assets an 
investor could add to a portfolio is especially rele-
vant for a comparison of a mean variance portfolio 
and a behavioral built portfolio. The philosophy of 
the latter implies that the portfolio should be com-
posed of assets selected by the investor on the basis 
of several criteria making the mean variance not the 
sole indicator of choice. As recalled by De Bondt et 
al. (2008, p. 9) “Behavioral finance is based on three 
main building blocks, namely sentiment, behavioral 
preferences, and limits to arbitrage”. Consequently 
such additional criteria could include naturally 
downside risk, but also other principles like the eth-
ical nature of the firms, sin portfolios and faith- 
based stocks selection and so on. Liston and Soy-
demir (2010), Lin and Vanderlinden (2006) high-
light the influence that religious and ethical prin-
ciples can have on the behavior of investors. Porter 
and Steen (2006) show different ways of integrating 
faith in stock investing. Vieira (2011) and Beaumont et 
al. (2008) show that the sentiment of the investor can 
lead to strong variations in the investment behavior. 

Therefore, we choose to compare portfolios with a 
limited number of assets and not all the available 
assets. This would partially constrain the mean va-
riance approach and in contrast give more relevance 
to a behavioral approach. Nevertheless the number 
of assets in the portfolio must be sufficient to make 
diversification suitable and the portfolio approach 
still relevant. For this we try to construct well diver-
sified portfolios with a sufficient small size to allow 
a theoretical stock picking behavior from a small 
investor. We define a well-diversified portfolio as 
one which generates at least 90% reduction of the 
variance relative to that of the least-diversified port-
folio, i.e. the 2-asset case. This definition is consis-
tent with the one used in the research literature 
(Statman, 2004). Thus, for robustness reasons, fol-
lowing the methodology of Campbell et al. (2001) 
we determine whether a reasonably good diversifi- 
 

cation can be achieved with a small number of 
stocks. We denote the number of assets in a portfo-
lio by n = 2, 3,..., 71. The assets are chosen random-
ly and enter the portfolio with equal weights. For 
each value of n we compute the average variance of 
10,000 randomly constructed portfolios composed 
of n assets. We obtain that in the market under con-
sideration (71 assets) a portfolio composed of 15 
assets can reach a sufficiently high diversification 
level. Figure 2 depicts the decrease in variance 
when the number of assets in the portfolio increases. 
In practice the number of assets in the composition 
of a well-diversified portfolio varies depending on 
the market and the time period under consideration. 
It is 20 for Bloomfield et al. (1977), 30 for Statman 
(1987), 120 for Statman (2003).  

 
Fig. 2. Diversification effect 

Naturally the difference in variance of the portfolio 
falls when the number of assets in the portfolio in-
creases. Table 3 reveals the numerical expression of 
this effect: 52% of variance is reduced when the 
number of assets in the portfolio goes from 2 to 4. If 
the portfolio contains 15 assets the variance is re-
duced by over 90% in comparison with the least-
diversification scenario. 

Table 3. Diversification effects 
Number of assets  2 4 6 8 10 12 15 20 30 50 71 
Reduction of variance* 0 0.52 0.69 0.78 0.83 0.86 0.91 0.94 0.96 0.98 0.99 

Note: *Proportion by which the variance is reduced. 
 

3. Methodology 

To run portfolio simulations we construct optimal 
portfolios of Markowitz and of Shefrin-Statman. We 
proceed in the following two steps. First, we esti-
mate expected annual returns using the bootstrap 
method. Second, we construct the portfolios using 
the state space from the first step. 

Step 1. From among the 71 stocks in our sample we 
randomly choose 15 assets. We also select a random 
interval within the period from June 1, 2001 to June 

1, 2007 of 250 consecutive days. Thus, we construct 
the following matrix of daily returns, where Ai de-
notes an individual asset, each element ri,j denotes a 
daily return of the asset i at the date j: 
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We resort to the historical simulation method (Hull 
and White, 1998) to compute the expected annual 
returns. Namely, to simulate the expected returns at 
a future date, in a one year period after the date of the 
stock price observations for 15 random assets, we 
randomly select a 250-day period in our sample. In 
France a year is made, on average, of 250 trading 
days. By selecting a string of 250 days we choose a 
one year moving windows with random start. For 
each of these random windows we compute the daily 
returns for each stock. In line with the general prin-
ciples of the Hull and White (1998) method we take 
the future uncertainty to be represented by 1,000 
states of nature. For that, we repeat the bootstrap 
procedure 1,000 times to simulate 1,000 lines of fu-
ture annual returns for 15 assets.  
Step 2. To compute the optimal portfolios of 15 as-
sets we need to solve the following optimization 
problems: minimization of portfolio’s variance giv-
en the expected returns for Markowitz portfolio and 
maximization of the portfolio’s expected return 
given the probability α of earning below a threshold 
value r* for Shefrin-Statman portfolio.  
In the Markowitz (1952) problem the program is to 
minimize the variance of the portfolio returns given 
the expected return E (r) or to maximize the expected 
return subject to an acceptable level of variance of 
returns (Var). This problem is well known to have a 
closed form solution. In the Shefrin-Statman problem 
given the expected return E(r) and probability P(r < 
r*) of earning less than r* the program writes: 

( ) ( )max . . * .E r s t P r r α< ≤     (5) 

Due to the absence of analytical solutions, the solu-
tion to this problem requires numerical methods. We 
consider 12 different cases for the Shefrin-Statman 
problem following their own numerical examples: r* 
∈ {0; 0.05; 0.1} and α ∈  {0; 0.1; 0.2; 0.3}. With 
these 12 scenarios we construct the state-space matrix 
from the previous step 140 times (the choice of 140 
repetitions is somewhat arbitrary, we stopped the 
trials sufficiently long after the results started show-
ing identical values). Thus, we repeated the matrix 
simulation 1680 times. For each matrix we construct 
the Markowitz (1952) portfolio frontier and the port-
folio optimal for a downside risk investor who makes 
her choice within the Shefrin-Statman framework. 
We presume that the part of the initial wealth in 
 

vested in a single asset is equal to k/15, k = 0, 1,..., 15 
and we consider a sample of 100,000 portfolios. It 
can be shown that the total number of different port-
folios is about 77 million. For each of the 100,000 
portfolios we verify if the security constraint is met. 
The set of portfolios that meet the security constraint 
is called the security set. According to the Shefrin-
Statman problem the optimal downside risk portfolio 
is the one that belongs to the security set and that 
allows us to reach the maximum expected value of 
returns. Whenever such a portfolio exists, i.e. meets 
the regularity conditions, we compute its standard 
deviation and expected return. These two values for 
each portfolio enable us to locate the portfolio in the 
traditional risk-return space. In each case we compare 
the two portfolios to identify if the downside risk 
portfolio is superior to the symmetric risk portfolio in 
the weak Pareto sense, that is, provides a higher ex-
pected return with the same level of standard devia-
tion or reduces standard deviation without affecting 
the expected return. 

4. Results 

Out of 1680 we obtain 651 cases where no optimal 
downside risk portfolio exists as none of those 
100,000 portfolios under consideration meets the 
security constraint. The results of our calculations are 
shown in Table 4. We denote NS the number of the 
optimal downside risk portfolios constructed for each 
couple (r*, α). The more demanding the investor in 
terms of the individual asset characteristics, the fewer 
the elements his set of security contains. For exam-
ple, we observe that when the admissible probability 
of failure α increases (and subsistence level r* re-
mains the same) the number of portfolios that meet 
the security constraint increases. Similarly, if r* in-
creases (and α remains unchanged), the security set 
becomes smaller. When α = 0, the investor seeks 
insurance in all states of nature and, if r* = 0, he re-
covers his initial investment in all states of nature. In 
this case there are only 30 cases in which the investor 
could reach his goal. When α = 0 and r* = 0,05 the 
investor seeks to reach at least a 5% return regardless 
of the state of nature. This scenario is even more 
difficult: there are only 20 situations when it is possi-
ble. Finally, if α = 0 and r* = 0,1 the investor will be 
satisfied only if he earns 10% without any possibility 
of failure. The number of portfolios meeting this 
constraint is limited to 14 only. 

Table 4. Results 
3 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 
α 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3 
Ns 30 102 114 117 20 102 113 120 14 82 99 116 
Ns/140 0.21 0.73 0.81 0.84 0.14 0.73 0.81 0.86 0.1 0.59 0.71 0.83 
NM 6 0 0 0 0 0 0 0 1 0 0 7 
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We denote NM the number of cases, where a Mar-
kowitz investor selects an optimal portfolio different 
from the optimal downside risk portfolio. We realize 
that there are only 7 cases out of the 1029 (only 0,68 
%) in which the choice of a Markowitz investor 
does not coincide with that of a downside investor. 
Let us take a closer look at such a case. We illustrate 
a common case where NM = 0, which implies that 
the downside investor chooses a portfolio on the 
Markowitz frontier. Figure 3 depicts all 100 000 
portfolios that are characterized by their standard 
deviation (on the horizontal axis) and their expected 
return (on the vertical axis). Each grey point 
represents one portfolio of 15 individual assets. 

 
Fig. 3. Set of all 100,000 portfolios 

In Figure 4, we depict the previously obtained tradi-
tional umbrella shape of the portfolio and take a dee-
per look at how the assets in this portfolio are influ-
enced when the r* and α parameters are modified. 

 
Fig. 4. Evolution of the portfolio under different assumptions 

Thereby we can depict on the same drawing the 
result obtained for various levels of aspiration and 
admissible failure. Let us imagine an investor, who 
is more risk-averse. Naturally, his security set will 

contain fewer portfolios. Let us consider the follow-
ing values of α = 20, 10 and 0 percent. These cases 
are represented in Figure 4. Zone i identifies portfo-
lios that allow the investor to recover his initial in-
vestment in any state of nature, i.e. that create a 
perfect insurance against any loss. The set of portfo-
lios (zone ii), which includes the previous set (zone 
i) allows the investor to recover his initial invest-
ment in 90% of cases; the lower set (zone iii) is for 
an investor whose α equals 80% and so on. We find 
the same result when r* increases and α remains at 
the same level. Each zone encompasses the previous 
one for the same level of confidence. 

Thus, we can conclude that for any level of α and r* 
the security set will always contain a part of the 
efficient Markowitz frontier. This is what is meant 
when we suggest that the optimal downside risk 
portfolios coincide with those of a Markowitz inves-
tor. In Figure 4, the letter B represents the optimal 
portfolio for a BPT investor characterized by an 
aspiration level equal to the initial investment and 
an α of 90%. At the same time, B is optimal in the 
Markowitz (1952) sense for an investor who re-
quires the level of risk which corresponds to 0,18 of 
standard deviation. The same reasoning applies to 
the portfolio represented by the letter A. This port-
folio is optimal under BPT (α = 0; r* = 0) and also 
in the Markowitz sense. 

We notice two interesting points. The first one con-
cerns the measures of risk. In both cases, the Mar-
kowitz approach and the BPT, we note that the more 
risk-averse the investor, the less risky his optimal 
portfolio. Indeed, under BPT, an investor who re-
quires more security will build up a less risky port-
folio (less risky not only in terms of downside risk 
measure but also in the Markowitz framework). The 
optimal portfolio of an investor who requires more 
security is on the left of the Markowitz efficient 
frontier. Both portfolio A and B are on the efficient 
Markowitz frontier. 

The second interesting point concerns a specific 
case when α is equal to 0. Here, loss is not possible: 
in all cases the investor is able to recover his initial 
investment. Thus, the risk measured by variance or 
standard deviation measures uncertainty associated 
with random but positive returns. Out of these port-
folios the BPT investor chooses the one with the 
highest return. At the same time, an investor follow-
ing the Markowitz approach chooses the portfolio 
with the a priori fixed standard deviation. By reduc-
ing the level of risk this investor denies himself the 
chance of getting very high returns by ensuring that 
he cannot lose money. This is the underlying idea 
behind the criticism of symmetric risk measures 
such as variance and standard deviation. 
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Conclusion 

Our results show that the Markowitz (1952) portfo-
lio selection model can be a viable and cost effec-
tive tool for investors despite the fact that the sym-
metry of risk with respect to the expectation is non-
intuitive. We used historical stock price observa-
tions with 71 assets over 1535 days to run portfolio 
simulations of two different kinds of investors. One 
investor in our simulations used symmetric risk 
measure and chose its optimal portfolio by mean-
variance analysis. The other one considered down-
side risk measure following the BPT. We find that 
the portfolio choices of the two are very similar. 

Our research into security constraints and security 
sets offers empirical evidence that despite the intui-
tive clumsiness of the symmetric risk measures the 
mean-variance framework produces outcomes that 
coincide with the alternative portfolio theories based 
on safety-first principle and downside risk. The 
value of this study rests in part with the fact that em-
pirical studies on downside vs. symmetric risk are 
very limited. We show that mean-variance portfolio 
optimization and minimum downside risk portfolio 
choice produce very similar outcomes. The im-
plycation is that computationally complex portfolio 
choice via downside risk minimization is not a cost-
effective avenue to pursue for portfolio managers. 
Thereby our results do not reject the assertions of a 
number of papers (Roy, 1952; Fishburn, 1977; Bertsi-
mas et al., 2004) that claim that investors perceive risk 
to be the downside deviations from the objective levels 
of returns rather than any deviation by offering the 

possibility for investors to select a small number of 
assets to build a portfolio based on their own principles 
rather that just mean variance analysis. 

One limitation is that in this simplified version of 
the Shefrin-Statman model we use true probabilities 
and not distorted ones. Therefore it does not incor-
porate a large variety of extreme behavior of the 
investors. A possible development of this work 
would be to allow for more extreme points of view 
and behavior of the investors. For example Das 
(2010) transcribed Markowitz’s mean-variance port-
folio theory and Shefrin and Statman’s BPT into a 
mental accounting (MA) framework. They show 
that attitudes toward risk vary for each mental ac-
count and that this behavioral approach gives mean-
variance efficient portfolios under a range of specif-
ic conditions. These generalizations of MVT and BPT 
via a unified MA framework result in a fruitful con-
nection between investor consumption goals and port-
folio production. Chiang et al. (2006) show the exist-
ing different groups of investors, with such different 
goals, who perceive the market differently and act 
differently accordingly to their perceptions.  

A promising next step would also be to consider 
new data in the light of the ongoing financial crisis 
and credit crunch. CAPM has shown limitations in 
troubled economic times or with unclear informa-
tion, as reported on recently in a study on the Greek 
stock market (Theriou et al., 2005). As investors 
become more prudent with lack of attractive oppor-
tunities perhaps the behavioral portfolio theory be-
comes more likely to hold. 
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