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A stochastic model for loan interest rates 
Abstract 

The topic of interest rate restrictions and their legal implications represents a delicate subject about which a recent 
inventory of EU authorities was developed. This is aimed to inspection of the so called principle of “good morals” 
against usury for the Member States. 

The most recent Italian law regulating legal rates of interest applied in loans, sets a threshold under which loan interest 
rates have to remain for being nonusurious, in the sense that if the loan rate lies outside the threshold, it becomes a 
usury rate and has to be prosecuted. The threshold is stated by Bank of Italy precisely each three-month period. In the 
paper the authors propose a stochastic process modelling the non-usurious interest rates applied in loans, in order to 
control its quarterly behavior. It is studied in the form of a modification of the Cox, Ingersoll and Ross model moving 
between two bands and closed expressions for its expected value and variance are given both conditional and uncondi-
tional. The model parameters are estimated by the Indirect Inference Method; the behavior of the expected value and 
variance functions are illustrated with graphs. 
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lation.
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Introduction  

An inventory of interest rate restrictions against 
usury in the EU Member States was achieved at the 
end of 2010. In particular the EU authorities’ atten-
tion focused on the Interest Rate Restrictions (IRR) 
established on precise legal rules restricting the 
credit price, both directly by fixed thresholds as 
well as indirectly by intervening on the calculation 
of compound interest (Directorate-General of the 
European Commission, 2011). 

Since May 2011 the Italian law governs interest 
rates in loans with a new regulation, fixing a thre-
shold above which interest rates applied in loans are 
considered usurious. The law fits in the civil and 
penal case in point of the usury crime the objective 
element of the interest rate over which penalties and 
civil sanctions go off. The borderline rate is calcu-
lated as 125 per cent of the reference rate TEGM 
plus 4 per cent. The acronym TEGM stands for 
Average Effective Global Rate. Therefore the max-
imum admissible value is: 

Threshold rate = 1.25 TEGM + 0.04. 

The law states that the difference between the thre-
shold rate and TEGM cannot go further on 8%, this 
implying that the maximum value admissible for the 
reference rate cannot exceed 16%. TEGM value, 
quarterly settled and published by Bank of Italy, is 
based on annual interest rates applied by banks and 
financial intermediaries in financial operations of 
the same type, annually classified by Italian Minis-
try of Economics and Finance. TEGM includes 
commissions and general expenses while taxes are 
left out. In the framework the law prescribes, we 
propose a model for representing the stochastic 
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movement of loan interest rates as a control tool for 
informing both in the loan interest rate trend and in 
option pricing forecasting. 

In literature basic contributions to the study of the 
interest rates in a stochastic environment are well 
known and usually adopted in financial evaluation 
problems. In the particular case of exchange rates, 
the application to problems concerning the target 
zone had an important initial impulse with Krugman  
(Karatzas and Shreve, 1991) and from this contri-
bute on, a large production has taken place, dedi-
cated to both realignment and no realignment hy-
potheses. In particular De Jong et al. (Gouri´eroux 
and Monfort, 1996) presents a modification of the 
CIR model for exchange rates in a target zone in 
both cases. 

Within the abovementioned Italian law, we propose 
a simply tractable stochastic model for controlling 
the behaviour of the loan interest rates in period of 
quarter; due to the nature of the process we are going 
to study, the model will be with no realignments, be-
ing no changes of the fixed TEGM in the each quarter 
time interval. 

It is the aim of the paper to provide a stochastic repre-
sentation of the evolution in time of non-usurious 
interest rates, in order to obtain information concern-
ing returns/costs of loans. 
The layout of the paper is the following. In section 1 
we construct the model, set the stochastic differential 
equation of the process and show the existence and 
uniqueness of its solution. In section 2 we introduce a 
modification of the model serving as a means for sim-
plifying moment calculation procedures. In section 3 
we present stochastic calculus lines for getting condi-
tional and unconditional expected value of the interest 
rate process while section 4 is dedicated to its va-
riance. Section 5 is centred in the process parameter 
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estimation and, finally, in section 6 numerical re-
sults are illustrated. Some concluding remarks close 
the paper. 

1. The stochastic model for loan interest 
rates. The construction 

We denote by it the stochastic interest rate applied 
in loans and by the TEGM, the constant quarterly 
rate fixed as previously explained. According to the 
present Italian regulation, it has to move within the 
following interval: 

0 1.25 0.04ti                                                 (1) 

in which the upper bound is known. 

From equation (1) we can express the relation in 
term of the instantaneous interest rate: 

1 1.25 0.040 ln (1 ) ln (1 ) ln
1ti          (2) 

indicating by: 

ln(1 )

ln(1 )                             

1 1.25 0.04ln            
1

t ti

m m R

k k R

                      (3) 

equation (2) becomes: 

0 t m k                                                           (4) 

In what follows we describe the process t as a sto-
chastic interest rate constrained within the two 
bands in equation (4), both prefixed and known. 

The description of this specific rate process asks for 
two basic behavioral conditions. The strong compe-
titiveness among loan bidders in a sector characte-
rized by an increasing transparency, makes suitable 
thinking to a process subject to the mean reverting 
elasticity property. In the model we propose, this 
aspect is represented by an autoregressive term 
attracting the interest stochastic rate it towards ,
that is t towards m. Moreover we ask the model to be 
heteroskedastic: in particular, its diffusion coefficient 
has to decrease when approaching the threshold rate, 
that is when t approaches m+k, and at the same time 
has to avoid negative values. No realignment prob-
lems are recognized: in each quarter time horizon, the 
model will not suffer changes in the fixed value,
being TEGM constant in each period. 

Basing on these considerations, the stochastic 
process for the loan instantaneous interest rate can 
be described by the following differential equation: 

( ) [ ( )]t t t t td m dt k m dW               (5) 

with 0 t m + k, m, p, and k positive parame 
ers, with 0 the initial position of the process and Wt
a Wiener process. 

The existence and uniqueness of the solution of 
equation 5 is based on well known results in sto-
chastic differential equations theory.

.
2. The centred model 

The model in equation (5) can be rewritten in the 
centred version. This handling allows the use of 
straightforward procedures useful for the moment 
calculations we will develop in sections 3 and 4. 

Posing: 
*
t t m                                                     (6)

the stochastic differential in equation (5) becomes: 

( )( )* * * *
t t t t td dt m k dW                (7) 

with: *
tm k. 

The process *
t is centred around m and the long 

term mean converges almost everywhere to 0. 
Moreover it is immediate to observe that the ex-
pected values of the processes in (5) and (7) only 
differ by m having nevertheless the same autocova-
riance function. 

3. The expected value of the process 

Applying Ito’s theorem to equation (7), we have: 

( )( )* t t * *
t t t td e e m k dW                        (8) 

and integrating in (u,u + h]5 with h  0 we can write: 

( )

( , ]

( )( )* * - h - h t-u * *
u+h u t t t

u u h

e e e m k dW    (9) 

Setting: 

( )
t

( , ]

( )( ) .- h t-u * *
u+h t t

u u h

e e m k dW           (10) 

equation (9) can be expressed as follows: 

.* * - h
u+h u u+he                                        (11) 

Recalling a property of the martingale process 
(Gerber, 1979) and after some lines of algebra, we 
write the conditional expected value of the process: 

( )* - h *
u u+h uE e                                                 (12) 

from which we get immediately the unconditional 
expected values: 

E ( *
t ) = 0, 

E ( m ) = m.                                                          (13) 
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4. The variance of the process 

Let’s consider the conditional variance of the 
process: 

2 2( ) ( ) ( ).* -ph *
u u+h u u u u u+hVar Var e h E           (14) 

that, resorting to the properties of Ito stochastic 
integral, can be rewritten as (Gerber, 1979). 

2 ( )
[ , )( ) [( )( )]* p t u * *

u u+h u u h e u t tVar E m k dt. (15)          

After some lines of algebra, we obtain: 
2 2 ( ) -2 ( )

( , ]( ) e [ ( ) ( )]* ph -p t u * p t u *
u u+h u u h u u uVar mk k m e e Var dt.                                                                

Multiplying by e2ph  and setting: 
2( ) ( )ph *

u u+hg h  = e  Var                                             (16) 

we can write: 

2 2 2( ) ( ) + [ ( )
]

ph

ph * 2*
u u

g' h  = - g h e mk + k - m
e

                   (17) 

with the boundary condition g (0)=0. It derives:

2
2 2

2 2
2 2

e ( 2 ) 1 e ( )( ) [ ( 1)]
2 2

h h
- h * 2* h

u u
p  p  g h  = e mk  +  (k  m) e
p p

                                                                   

from which, on the basis of equation (16), the con-
ditional variance follows: 

( ) [ 2 ] ( )*
u u+hVar exp ph g h                                  (18) 

and the unconditional variance directly flows: 
2

2( ) .
2

*
u u

mkVar
p

                                               (19) 

5. Parameter estimation 

In models for which the likelihood function is ana-
lytically intractable or too difficult to evaluate, the 
indirect inference is a very useful simulation proce-
dure. It was first introduced by (Smith 1990; 1993) 
and later extended in an interesting paper by (Gou-
riéroux, Monfort and Renault 1993).  
The central idea is to use an auxiliary model which 
can be estimated using either the observed data or data 
simulated from the model itself. The aim is to find the 
parameter vector of the model so that these two sets of 
parameter estimates are as close as possible. 

The process t we are going to calibrate is observed 
at discrete times equally spaced and the approach 
we will follow consists in replacing the initial con-
tinuous model in equation (5) with its Euler discre-
tization.

We recall that, referring to the general stochastic 
differential equation: 

( , ( )) ( , ( )) ,t td t t t t dW                             (20) 

where Wt is a Wiener process, the Euler discretiza-
tion can be expressed as follows:  

1 1 1( ; ) ( ; ) ,t t - t - t - tr r r r                               (21) 

where 1,2{ }t t= ,...,Tr  are the available observations cor-
responding to the dates 1, 2, T,  = [ , m, k, ] is the 
parameter vector to be estimated and k is a Gaus-
sian white noise. Referring to model in equation (5), 
the Euler discretization can be written as follows: 

1 1 1 1( ) ( ( )) .t t- t- t- t- tr r p m r r k r m            (22) 

Indicating by  (r, ) the likelihood function re-
ferred to the Euler discretization, we can estimate 
the model using the observed data. In particular we 
apply the maximum log-likelihood estimation me-
thod to the approximated model in equation (22) to 
get parameter estimates . Formally, ’ results: 

ˆ argmax log( ( , ).r                                        (23) 

Referring to equation (21) we can rewrite equation 
(23) as follows (Ahangarani, 2005):

2
2 1 1

1 21
1

[ ( )]1arg max { 0.5log ( ) }.
2 ( )

T t - t -
t -t -

t -

r r
r

r

                                                                      

(24) 

It is immediate to rewrite equation (24) considering 
the discretization introduced in equation (22). 
Being the Euler discretization an approximation, the 
model in equation (22) is misspecified. By means of 
the indirect inference method, to correct the asymp-
totic bias of ’ we can use simulations performed

under the initial model finding asymptotically con-
sistent estimators of model in equation (5) (Ahanga-
rani, 2005).  

In order to simulate the continuous process we can 
use a finer Euler discretization involving a very 
small discretization step  such that: 
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( ) ( ) ( )
( 1) ( ) (k )( ; )k k kr r r                     (25) 

where t = k (k =1,2,…,T/ ) and k N (0, ),
Given the set of random errors k  and the structural 
parameter vector , from equation (25) we generate

M statistically independent simulated data sets,  
( ){ } 1, 2, ...., ,m

kr m M  where ( ) ( ) ( ) ( )
2{ } ( , ,..., ).m m m m

k k Tr r r r
Each of the M simulated data sets is built using the 
same set of random errors. At this point we will 
maximize the log of the likelihood function across 
the M simulations, getting the following equation: 

2
2 1 1

1 21 1
1

[ ) ( )]1arg max { 0.5log ( ) ) }.
2 ( ) )

m m
M MM m t- t -

t - mm m
t-

r r
r

r
                                                  (26) 

The last step is the calibration of parameter esti-
mates. We need to choose a formal metric to meas-
ure the ‘distance’ between ’ and ’M and to this aim 
we implement the Wald approach consisting in choos-
ing  in equation 26 such that the quadratic form in the 
vector ( ’  ( ’M( )results minimized (Keane and 
Smith, Jr., 2004): 

ˆ
ˆ arg min ( ( ( ) ( ( ( ))Wald M M' ' W ' ' (27)

having indicated by W a positive definite ‘weight-
ing’ matrix. It has been shown that for T sufficiently 
large, the choice of W can be arbitrary (Gourieroux 
and Monfort, 1996). So we can assume W an Identi-
ty matrix. 

5. Some results 

In this section we illustrate the behaviour of the con-
ditional expected value and variance functions. 

The parameter estimation procedure described in 
section 4 has been applied to the historical series of 
the Italian average rates on loans referring to the 
period 1/04/1997-1/07/2011. Being the optimization 
procedure very time consuming we choose to simu-
late M = 50 paths. The optimization routine was 

implemented on Matlab. The initial values for the 
estimation procedure have been obtained by the 
historical series using the Least Squares methods 
implemented on E-Views 5.0. The procedure gives 
the following results for the parameters of the mod-
el in equation (5): p = 0.1165, with p =0.1165 m = 
0.0575, k= 0.050371,  = 0.0035. 

The behavior of the conditional expected value of 
the centred rate *

t  is shown considering daily ob-
servations within the quarter and different values of 
the rate observed at the beginning of the period. In 
Figure1 we illustrate the trend of the process *

t  as 
function of the time and of the initial state values. 

Fixing the time of valuation, the conditional ex-
pected value increases with the rate observed at the 
beginning of the period. On the other hand, fixing 
the initial rate, when the time increases the expected 
value decreases and tends to zero, the unconditional 
expected value. For low initial rates, expected *

t ra-
pidly increases at the beginning of the period and 
we can also observe that it is noticeably different 
from 0 as far as the initial part of the quarter for any 
initial rate value. 

Fig. 1. Expected value function { *
u 0,0. 05} {h, 1,90 days} 

Figure 2 below shows the behavior of the va-
riance function. Fixing the rates, the variance 
increases with time while it slightly decreases as 

function of the initial rate. The variance values 
tend to stabilize and converge to the unconditional 
variance value. 
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Fig. 2. Variance function{ *
u0,0. 05} {h, 1,90 days} 

As already observed for the expected value, the 
variance too is subjected to considerable variations 
during the initial part of the quarter. 

In Figure 3 we refer to the stochastic process t de-
scribed by (5). We fit the model considering the last 
quarter of the data set used to estimate parameters. 
The red line is the actual maximum cap. We exem-
plify the trends of the process t choosing four dif- 

ferent values of the initial rate and simulate 10000 
trajectories of t, employing the euler discretization 
(22). We observe that, as the time increases, all the 
values tend to the mean m = 0.0575, that is to the 
expected value of the process. Moreover for each 
time of valuation, the process takes values lower 
than the cap and after 20 days the process tends to 
level off. 

Note: Initial values: 4%, 6%, 8%, 10%. 

Fig. 3. Simulated trajectories for  (t)

Conclusions 

The study provides micro-financial indications go-
verning the relationship between creditor and debtor, 
which is represented by the interest rate with bounda-
ries originated with legal measures. 
This is useful for planning of financing transactions, 
within an environment constrained by benchmarks 
set by the law, even in the perspective of transactions 
within leveraged finance. The characteristic parame-

ters, taken with respect to the time of evaluation, 
provide straight and synthetic addresses concerning 
the evolution in time of non-usurious interest rates, 
from the point of view of both parties. 

The paper concerns the stochastic analysis of the 
behaviour of the loan interest rates according to the 
current Italian law, in the framework of the principles 
of fairness against usury, as it is consolidated in the 
EU member states. The study is restricted in a quar-
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ter time interval, coming into line with the time lag 
chosen by the legislator. In each three month period 
the upper threshold rate is fixed and consequently the 
loan rates, laying out of the this barrier, become usu-
rious rates. In a three month period perspective, the 
system moves in a fixed target zone and, for its con-
nection with the exchange rates modelling, is ranked 
in the no realignment cases. 

The process describing the three month period be-
haviour of the loan rate is proposed as a modifica 

tion of the Cox Ingersoll and Ross model. It results 
as the unique solution of a stochastic differential 
equation and the expected value and the variance are 
calculated in conditional and unconditional hy-
pothesis. The procedure for estimating the parame-
ters characterizing the model is deepened and the 
numerical application closing the paper shows the 
results obtained for the parameters on the basis of 
an updated dataset of interest rates; the trends of 
expected value and variance of the process are 
shown with illustrations.
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