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Abstract

For core financial market activities like risk management and asset pricing, it appears to be crucial to investigate the
“connectedness” among financial institutions. In times of economic crises, a suitable measure of connectedness can
provide valuable insights of financial markets and helps to understand how institutions influence each other. In particu-
lar, depending on contractual obligations between financial institutions, the financial distress at a bank with large sys-
temic impact is likely to cause also distress at other institutions. In the literature, the latter phenomenon is generally
tagged by ’contagion’ and can eventually result in severe economic crises.

The purpose of this paper is to investigate the connectedness among German financial institutions during the global finan-
cial crisis 2007-2009, where the authors focus particularly on 2008 and its height in September 2008 with the bankruptcy
of Lehman Brothers. They make use of the definition of connectedness, as it was recently proposed by Diebold and Yil-
maz (2014). Their approach relies on analyzing multiple time series of volatilities by a vector autoregressive (VAR) mod-
el and a generalized forecast error variance decompositions. It provides several meaningful measures of connectedness
and allows for static (average), as well as dynamic (daily time-varying) analyses. The authors show that the connectedness

in Germany can be described well by the model.
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Introduction

One central aspect of modern risk management is to
analyze the interdependence of certain actors on the
financial market. Measuring these interdependences
between financial institutions becomes very impor-
tant during times of economic crises to judge e.g.
contagiousness in a market. In particular, since the
global financial crisis during 2007-2009, ’connected-
ness’ between financial institutions has been dis-
cussed extensively not only in the US, but also in
Europe. The Basel Committee comments on the risk
of contagion in a market as follows (Basel Commitee
on Banking Supervision, 2011, p. 7):

“Financial distress at one institution can materially
raise the likelihood of distress at other institutions giv-
en the network of contractual obligations in which
these firms operate. A bank’s systemic impact is likely
to be positively related to its (inter)connectedness vis-
a-vis other financial institutions”.

Analyzing the connectedness in financial markets
appears to be central to understanding the inner work-
ings of these markets. It is important for core finan-
cial market activities like risk management and asset
pricing. For example, connectedness is helpful to
analyze key aspects of market risk, credit risk, as well
as systemic risk and it is also central to understanding
macroeconomic (business cycle) risk. Especially in
times of crisis, investigating connectedness can pro-
vide valuable insights into questions like how institu-
tions influence each other.
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Unfortunately, there exists no natural definition of
financial or economic connectedness or a measure for
it. In general, connectedness shall be based on contrac-
tual obligations between firms. These can be found in
the balance sheets of firms, but a high frequency anal-
ysis of balance sheets is usually not feasible. A couple
of different approaches to conceptualize and to meas-
ure connectedness at various levels have been pro-
posed in the literature. Adrian and Brunnermeier
(2011) use Conditional Value at Risk (CoVaR) to con-
sider the situation between individual firms and the
overall market. This approach measures systemic risk
of a firm as the difference of market Value at Risk and
firm distress. On the other hand, Acharya et al. (2010),
Brownless and Engle (2012) and Engle et al. (2014)
use Marginal Expected Shortfall to measure systemic
risk. Hautsch et al. (2014, 2015) predict systemic con-
nectedness of a firm as the marginal impact of individ-
ual downside risks on systemic distress by using a
Value at Risk approach.

In this paper, we use the popular concept of connec-
tedness, as it has been recently proposed by Diebold
and Yilmaz (2012, 2014, 2015). Their approach relies
on analyzing multiple time series of volatilities by a
vector autoregressive (VAR) model and to measure
connectedness in several ways based on forecast error
variance decompositions. Their concept allows the
definition of several natural and insightful measures of
connectedness among financial asset returns and vola-
tilities. Furthermore, these variance decompositions
define weighted, directed networks which relate their
connectedness measures to those used in network lite-
rature. The approach of Diebold and Yilmaz has been
used in equity return volatility to analyze connected-
ness among US financial institutions during 1999-



2010 in Diebold and Yilmaz (2014), as well among
major US and European financial institutions during
2004-2014 in Diebold and Yilmaz (2016). Using poli-
cy uncertainty as input data, it has been used by Alter
and Beyer (2014), whereas KloBner and Sekkel (2014)
consider a modification where the connectedness is
defined based on generalized impulse responses in-
stead of variance decompositions.

The contribution of this paper is to measure and
analyze the connectedness among financial firms in
Germany at various levels based on the approach of
Diebold und Yilmaz (2014). Based on raw high-
frequency stock price data for 2008, we construct a
multiple time series of volatilities for German finan-
cial firms listed on the stock exchange and traded on
active liquid markets. The data were provided by the
Karlsruhe Institute of Technology (KIT). The data
set includes all trades on each trading day for each
stock on the electronic trading platform XETRA'. In
particular, we focus on September 2008, the height
of the financial crisis from 2007 to 2009, where
Lehman Brothers went bankrupt. To analyze the
data, we consider both average and daily time-
varying connectedness measures.

The paper is organized as follows. Section 1 intro-
duces the concept and describes the methodology of
connectedness. In section 2, the results of the connec-
tedness analysis of German financial firms are shown
and discussed in detail. The final section concludes.

1. The methodology of connectedness

1.1. VAR modeling of volatilities. The concept
of connectedness, as introduced by Diebold and
Yilmaz (2014), is based on stable vector autore-
gressions of order p to model time series of daily
realized volatilities Yy, i.e.

Y, = Z?:l AiYe +uy, (1)

where Y; = (Yi¢, ..., Yy¢)Tdenotes the (N x 1) vector
of volatilities of N considered firms at time ¢,
A;, i =1,..,pare (N x N) autoregressive coefficient
matrices and u, ~ (0,2,) is a white noise process
with mean zero E[u;] = 0 and positive definite cova-
riance matrix E[u,u,’] = X,. Note that (1) has also
a vector moving average (VMA) representation

R o )
Yt - Zi:l q)iu’t—i’

where ®@;, i = 0,1,2,... are (N x N) moving aver-
age coefficient matrices and @, = Iy is the (N x N)
identity matrix. Hence, Y,y = X8, ®juppy—; is
the forecast (at horizon H) of Y;, y, which leads to a
forecast error term

'An all-electronic trading system based in Frankfurt, Germany, which
accounts for more than 90% of all stock trades on the Frankfurt Ex-
change.
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with corresponding forecast error variance matrix
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Note that =f is equal to the optimal mean squared
error (MSE) predictor. As the ®;’s and X, will be
unknown in general, they have to be estimated from
data. Having observations Y;,.., Yy at hand, this can
be done by using, e.g., least-squares estimation of the
VAR coefficient matrices to get 4,, i = 1,...,p and
., by computing the sample variance matrix of the
VAR residuals %;=)1_  A;Y,—;, t=p+1,..,T. As
the @’s are recursively defined by @ = Z§=1 AjDg_;
with s = 1,2,..., where A; =0 for j > p, we get
estimators @; similarly by using A;, i =1,...,p.
However, in particular over long time horizons or
during crises, the ®;’s will usually not be constant
over time, that is, the data generating process (DGP)
will not be time-stationary. Hence, it is reasonable to
estimate time-varying parameters @;(t). For this pur-
pose, we consider a uniform one-sided estimation
window with width w, where for each time point,
only the most recent w time points enter the estima-
tion with equal uniform weights.

The VMA coefficients contain all contemporane-
ous and dynamic features of the multivariate time
series system. Instead of analyzing these coeffi-
cients directly, an alternative way is to use va-
riance decompositions (see, e.g., Liitkepohl,
2007). The variance decomposition indicates the
amount of information each variable contributes
to the other variables. It determines how much of
the H-step-ahead forecast error variance of each
of the variables in forecasting Y;; can be explained
by shocks. Note that the VAR innovations u, are
generally contemporaneously correlated, but the
calculation of variance decompositions does re-
quire orthogonal innovations. One common solu-
tion to transform the model to get orthogonal in-
novations is to use the Cholesky factorization.
Instead of using this Cholesky approach that de-
pends on the orderings of the variables, Diebold
und Yilmaz (2014) propose to use the generalized
variance decomposition by Koop et al. (1996) and
Pesaran und Shin (1998). This generalized ap-
proach uses correlated shocks instead of ortho-
gonal shocks, but factors into the calculation of
the distribution of the historically observed errors.

1.2. Generalized variance decomposition. In com-
parison to the special case of orthogonal shocks (u;)
in (1) that allows an application of a standard va-
riance decomposition, this is not possible if the
shocks are correlated. As discussed in Diebold and
Yilmaz (2014, p. 5), reduced-form shocks are rarely
orthogonal and it is inevitably necessary to make
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assumptions to identify wuncorrelated structural
shocks from correlated reduced-form shocks. To
address this issue, they suggest to use the genera-
lized variance decomposition (GVD) introduced by
Koop et al. (1996) and Pesaran und Shin (1998)
instead of using Cholesky factorization. If the latter
approach is used, the analysis will unintentionally
depend on the ordering of the variables in the VAR
system. Nevertheless, the GVD requires normality
of the shock distribution, which is the price to pay
here. For reaching normality, we shall let our con-
nectedness analysis be based on return volatilities
instead of returns, since volatilities tend to be much
more serially correlated than returns (compare Di-
ebold und Yilmaz, 2014, p. 14). Further, to make the
data more normal-like, we take logarithms.

In general, for variance decompositions, own va-
riance shares are defined to be the fractions of the
H-step-ahead error variances in forecasting Y;; due
to shocks toi, for i =1, ..., N and spillovers to be
the fractions of the H-step-ahead error in forecasting
Y;; due to shocks to j, fori,j = 1,2, ..., N, such that
i #j. The H-step-ahead generalized variance

decomposition matrix DIH = [di'ng]’ ij=1,..,N
is defined to have entries
o = % Ziso Gl et g )

o (el opz, Ohe)

where e; is a selection vector with j-th element unity
and zeros elsewhere, @, is the h-th moving-average
coefficient matrix, Z,, is the covariance matrix of the
error terms and g;; is the j-th diagonal element of Z,,.

Note that the denominator is the forecast error
variance of variable iand the numerator is the
contribution of shocks in variable j to the H-step-
ahead forecast error variance of variable i. As
shocks need not to be orthogonal, forecast error
variation contributions do not necessarily sum up
to 100, i.e., row sums of D9¥ are not necessarily
equal to 100. Hence, to be able to interpret the
entries of a variance decomposition matrix as
shares, they have to be scaled. That is, we shall
gH
use DI = [ding] with d;ng = d—H instead of
Z] 1 ij
D9 in the following.
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1.3. The connectedness table. The entries of D91
can be used to analyze the connectedness between
assets i and j. More precisely, as described in Di-
ebold und Yilmaz (2014), the matrix D9 leads to a
so-called Connectedness table, which displays pair-
wise, as well as system-wide connectedness (see
Table 1). The connectedness table is central for un-
derstanding the different types of connectedness and
their relation that will be defined below.

For a system with N variables (Yi¢, ..., Yn¢), its up-
per-left (N x N)-block matrix contains the scaled
generalized variance decomposition matrix of the H-
step-ahead forecast error, i.e. D9, Its rightmost
column contains row sums, the bottom row contains
column sums, and the lower-right element contains
the average of the column sums (equal to the aver-
age of the row sums), where, in all cases, i # j, i.e.
the diagonal elements are excluded. The off-
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diagonal entries of D9% measure pairwise direction-
al connectedness from j to i and, following the nota-
tion in Diebold und Yilmaz (2014), we set

¢9H

iej

~gH ~gH
Note that (7', # €7,
directional connectedness from j to i is defined as

“)

The off-diagonal row and column sums, labeled
“From Others” and “To Others” in the connected-
ness table, define total directional connectedness
from others to i (“from” connectedness) as

— dgH.

3)

in general. The net pairwise
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and the total directional connectedness to others
from j (“to” connectedness) is defined as

N
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Analogously, the net total pairwise directional con-

nectedness (“net” connectedness) is defined as

CoH = ¢9H _ goH

i o« [ «o" (7)
Finally, the grand total of the off-diagonal-entries in
D" divided by N (equivalently, the average of the

“From Others” column or “To Others” row) meas-
ures total connectedness

N
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=g ), A

i,j=1, i#j

®)

2. Connectedness analysis of German financial
institutions

In this section, we make use of the connectedness tools
described in Section 1 to monitor and characterize the
evolution of connectedness among German financial
institutions during 2008. We proceed in four steps.
First, in section 2.1, we describe the data set that we
use as the basis for our connectedness analysis. Next,
we conduct a static and a dynamic connectedness anal-
ysis in sections 2.2 and 2.3, respectively. In section 2.4,
we take a closer look at the impact of Lehman Broth-
ers’ bankruptcy. Finally, in section 2.5, we comment
on the robustness of our results with respect to the
choice of model parameters.

Table 2. Overview of financial institutions (deadline
for the capital data was December 31)

L i Market capital in billion €
Institution Label Business
2007 2008 2009
Deutsche Bank AG Dtb  |Universal bank | 47.42 15.89 | 30.68
Commerzbank AG Com |Universal bank| 1.73 0.48 0.70
Deutsche Postbank Commercial
AG Pos bank 9.96 3.39 5.00
comdirect bank AG | CoD Direct bank 1.18 0.87 0.93
IKB Dt. Industrie- I
bank AG IKB | Creditintuition | 0.54 0.10 0.43
Aareal Bank AG par | Redlestate oo g0 | g5y
bank
Allianz SE All Insurance 66.60 33.98 39.56
MiinchnerRiick AG Mue Insurance 28.97 2291 21.45

2.1. The data set. The basis for our connectedness
analysis is a high-frequency intra-day data set for 2008
from XETRA provided by KIT that contains stock
prices p of German financial institutions for all trades
during trading hours from 09:00-17:30. We filtered the
available prices in 5-minute intervals', which results in
104 intra-day prices at times 9:00, 9:05, 9:10, ..., 17:30
for all 253 trading days in 2008. Precisely, we examine
eight German financial institutions. Table 2 provides
an overview of the considered firms during the crisis of
2007-2009. The sample includes two universal banks,

'If no price was available at that time, we used the most recent one.
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one commercial bank, one direct bank, one credit
bank, one real estate bank and two insurance compa-
nies. This choice of firms may seem arbitrary, but a lot
of banks in Germany are primary savings banks (Spar-
kassen), Landesbanken or cooperative banks®. Thus,
only a few banks are corporations that are suitable for a
connectedness analysis based on volatilities. Moreover,
our choice covers only stocks that are traded frequently
enough. For all firms, the daily realized return volatili-
ty is calculated based on the high-frequency intra-day
data, as the sum of squared log price changes over the
104 5-minute intervals during trading hours. This gives

Yie = X125(logpir — logp;—1)?, )

where p;; describes the stock price at interval i =
1,...,104 and trading day t =1,...,253. Figure 1
shows the daily realized volatility for each considered
firm. Instead of balance sheet information, we use
return volatilities, which depend (thus, not only) on the
forward-thinking assessment of brokers. Hence, we
consider volatility connectedness, as suggested by
Diebold und Yilmaz (2014), because volatility tracks
investors’ fear (e.g., “VDAX” or “VDAX New”) and
it is crisis sensitive, whereas crises will be of much
interest to us.

2.2. Static connectedness analysis. Based on the vola-
tility data pre-processed, as described in section 2.1
above, a static connectedness analysis is conducted.
The analysis is static in the sense that we set w —
in our analysis in this section leading to an “in aver-
age” connectedness analysis. Furthermore, we use a
VAR(3) approximating model and a forecast horizon
of H = 12. The latter choice was used also in Diebold
und Yilmaz (2014) and was motivated, e.g., by the 10-
day Value at Risk (VaR) required under the Basel
accord. In section 2.5, we discuss the robustness to the
choice of VAR order and forecast horizon.

Table 3 shows the connectedness among the consi-
dered institutions. For each firm, the diagonal entries
of the upper-left matrix (“own connectedness™) are the
largest ones in each column, especially for IKB and
comdirect bank. However, in most of the cases, the
total directional connectedness (“From Others” or “To
Others”™) is larger than the “own connectedness”. The
total connectedness, the mean of the total directional
connectedness (“from” and “to” are equal by defini-
tion), is of medium size 46.51. The total connectedness
describes the average impact of connectedness.

First, we look at the pairwise directional connec-
tedness C{gfj“ for all i,j=1,..,8 and i #j. We
observe the largest value of pairwise directional

%see Detzer et al. (2014) for a short overview about the German banking
system.

3see, e.g., boerse.de (2016).

*We suppress the exponent gH for better readability throughout this
section.
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connectedness from Allianz to Miinchner Riick
of Cprye an = 35.14 and the second largest from
Miinchner Riick to Allianz of Cu;; pye = 19.58.
These two companies are the two largest insur-
ance companies in Germany and are, along
with Deutsche Bank, the largest in our sample
in terms of their market capitalization (cf. Table 2).

The large connectedness is reasonable, since

Volatility of Deutsche Bank

20 30 40

Volatility of Commerzbank

Allianz is still a shareholder of Miinchner Riick
(Allianz Investor Relations, 2008b) and both are
located in the insurance sector.

Hence, it is absolutely plausible that the pairwise con-
nectedness between Allianz and Miinchner Riick is
large. The net directional connectedness from Miin-
chner Riick to Allianz is Cpjye a1 = -15.5.

Volatility of Postbank
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Fig. 1. Daily realized volatility during 2008

Table 3. Static connectedness table 2008

Dtb | Com | Pos | CoD | IKB | Aar | All | Mue |From Others
Dth 54.44( 3.05 [ 9.24 | 0.14 | 0.11 [14.63| 11.63 | 6.75 45.56
Com 12.52(39.55 [14.26| 1.27 | 0.35 |12.72| 12.71 | 6.62 60.45
Pos 6.37 | 5.92 [42.51| 0.71 | 0.06 {16.56| 19.25 | 8.61 57.49
CoD 402|844 |2.84|77.66(0.13|1.80| 255 | 2.56 22.34
IKB 0.68 | 0.52 | 0.19 | 0.02 {98.01| 0.24 | 0.22 | 0.11 1.99
Aar 6.05| 7.51 |11.55| 0.87 | 0.10 |42.96| 26.60 | 4.35 57.04
All 8.00 | 4.71 [13.64| 0.79 | 0.02 [14.93]| 38.35|19.56| 61.65
Mue 9.18 | 2.13 |10.40| 0.70 | 0.02 | 7.97 | 35.14 | 34.45 65.55
To Others|46.83| 32.29 |62.13| 4.50 | 0.78 |68.87(108.11{48.56 | 46.51
Nettotal | 1.27 |-28.16| 4.64 |-17.84|-1.21(11.83| 46.46 |-16.99|  0.00

The impact Ccom gy = 12.711s also quite pro-
nounced. Allianz officially sold Dresdner Bank to
Commerzbank during 2008 for almost 10 billion
€. But Allianz also became the largest shareholder
of Commerzbank with, at first, 18% and, later,
30% of the shares (Allianz Investor Relations,
2008a). Hence, the great impact of Allianz to oth-
er banks, and particularly to Commerzbank, was
expected. Further, the pairwise connection be-
tween Aareal Bank and Postbank is also rather
large with Caar cpos = 11.55, Cppscanr = 16.56
and C}os‘AAr = —5.01. In the first two quarters of
2008, Aareal Bank sold a portfolio of private con-
struction financing in amount of 1.5 billion € to
Postbank (see Kunisch, 2008).
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Deutsche Bank became the largest shareholder of
Postbank in 2008. Hence, it is not surprising that the
impact of Postbank to other banks is rather large with
Cpty —Pos = 9.24, Ceom pos = 14.26, Cpypos =
13.64, Cyye cpos = 10.40. Nevertheless, the small
role of Deutsche Bank is somewhat surprising, since
Deutsche Bank is the largest bank in Germany and
located in over 70 countries. In particular, because
Deutsche Bank was also affected by the financial
crisis. The stock prices of Deutsche Bank decreased
during 2008 to less than 15% of the pre-crisis value
(from 105€ to 15€). Note also that Deutsche Bank has
to pay a large risk surcharge, because its going bank-
rupt would have significant effects on the market'.
Hence, we would have expected the impact of
Deutsche Bank on other institutions to be much more
pronounced than what we observed in our analysis.

As Commerzbank held 2008 almost 80% of the
shares of comdirect bank, it was also somewhat
unexpected that the connection between Commerz-
bank and comdirect bank turned out to be not noti-
ceable high. But taking a closer look at the Commerz-
bank column in Table 3 reveals that the impact of a
shock occurring in Commerzbank to others, comdirect
bank is ranked second with Crop com = 8.44 after

'Compare Financial Stability Board (FSB) (2016).



the “own” connectedness. The same is true for a
shock occurring in comdirect bank with
Ccom —cop = 1.27, after the “own” connectedness.

The “from” connectedness measures range from 1.99
to 65.55. It is equal to 100 minus the “own connected-
ness” taking values between 34.45 and 98.01. In com-
parison, the “to” connectedness is between 0.78 and
108.11. Note that the sum of impacts to others is not
constrained to equal 100 such that “to” connectedness
can exceed 100. If the net total directional connected-
ness is negative, the firm is called a net-receiver and if
it is positive, the firm is a net-transmitter. The bottom
line in Table 3 shows that Allianz (46.46) and Aareal
Bank (11.38) are transmitters, whereas Commerzbank
(-28.16), comdirect (-17.84) and Miinchner Riick (-
16.99) are receivers. Deutsche Bank, Postbank and
IKB have a net total near to zero and, essentially, turn
out to be neither transmitter nor receiver.

2.3. Dynamic connectedness analysis. In compari-
son to the static connectedness analysis of section
2.2, now we make use of a VAR(3) approximating
model together with a uniform one-sided rolling
estimation window of width w = 100 days to esti-
mate time-varying model parameters. For the dy-
namic connectedness analysis, we proceed in three
steps. First, we look at total connectedness, before
we turn to total directional connectedness as well as
pairwise directional connectedness.

2.3.1. Total connectedness. In Figure 2, the dynamic
total connectedness during 2008 is shown. Note that
the total connectedness curve is not available till end of
May, as we only have data at hand ranging from Janu-
ary 1 to December 31, 2008 and we make use of an
estimation window width of 100 days.

Total Connectedness during 2008

8
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T T T T
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Fig. 2. Dynamic total connectedness during 2008

We observe a strong variation of the total connected-
ness from 37.53 to 87.82. In particular, we can see
that there exists periods, where the total connected-
ness is constant till a shock occurs and, then, the total
connectedness abruptly goes up. In the middle of
September, total connectedness increases and, then, it
jumps till the beginning of November. From that
point, total connectedness falls constantly till the end
of the year. The high variation during September and
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October is an indicator that several events occur in the
market that heavily influence the stock prices. In the
middle of September, the financial crises reached its
height in the US and Europe with several bankruptcies.
In October, some German banks got into trouble and
the Federal Government of Germany passed a rescue
package for crisis-affected banks. From the beginning
of November, the total connectedness decreases. Sev-
eral banks needed governmental support of guarantees
and money. Hence, the total connectedness drops,
because the banks desired to be as independent of the
others as possible.

For an explanation of both peaks in June and July, we
refer to section 2.3.3. In section 2.4, we have a closer
look at September 2008 to explain the large variation
of connectedness observed during this period.

2.3.2 Total directional connectedness. In Figure 3,
time series of total directional connectedness (“to”,
“from” and “net”) are plotted for each financial institu-
tion. We observe that for all firms, the “to” connected-
ness (systematically) varies much more over time than
the “from” connectedness. The latter phenomenon is
explained by Diebold und Yilmaz (2014) by the fact
that, in particular, large shocks are expected to be
transmitted to other stocks. If the stock of a larger (cen-
tral) institution is shocked, this shock is expected to
cause also larger spillover effects. Also, since shocks
are quite distinctive in their size and severity and as the
transmitted institutions are different, the “to” connec-
tedness has a wider range than “from” connectedness.

As already observed for the total connectedness in
Figure 2, we see that the variation of directional
connectedness does increase considerably as well
for most firms in September and October. This can
be explained by idiosyncratic shocks that hit indi-
vidual stocks during this time period and these
shocks had been transmitted to other stocks.

Figure 4 shows the degree distribution for “to” and
“from” directional connectedness of all eight firms in
terms of their mean, maximum, minimum, 25%- and
75% quantiles, respectively. Although, by definition,
the means of “from” and “to” connectedness are equal,
their distributions turn out to behave very differently.
As discussed already above, the variation of “from”
connectedness is much lower than the variation of “to”
connectedness and the range of the distribution of
“from” connectedness is very small in contrast to the
range of the “to” connectedness. Moreover, we ob-
serve that “from” connectedness is more left-skewed,
whereas “to” connectedness gets more right-skewed
during the crisis. A comparison of Figure 2 and the left
panel in Figure 3 leads to the conclusion that the large
total connectedness during September and October
2008 is mainly caused by the large maximum values
of the “to” connectedness. That is a signal that a shock
occurs in one firm that influences the others to
some large extent.
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Fig. 3. “To”, “from” and “net” directional connectedness during 2008 @ = 100 and the forecast horizon H = 12

2.3.3. Pairwise directional connectedness. To see
how a shock at one financial institution affects the
others, their pairwise connectedness has to be consi-
dered, as it does not average or sum up connected-
ness. In particular, the analysis of dynamic pairwise
connectedness is very important to understand the
evolution of interdependences among financial firms,
for example, during economic crises. This is possible,
as we allow the VAR parameters to depend on time
by using rolling window estimation, such that the
weights of pairwise connectedness between two firms
vary also over time.
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Given the eight institutions under consideration, it is an
infeasible task to present a detailed analysis in the con-
fines of this paper. Hence, we have a short look at the
connectedness around June 10 and July 25, respective-
ly (compare also Figure 2). In section 2.4, we will also
have a closer look at net pairwise connectedness dur-
ing the most important days of the crisis in September
2008 around the bankruptcy of Lehman Brothers.

Figure 5 shows networks of “net” pairwise direc-
tional connectedness on June 10 and on June 13,
where the color of the edges indicates the height
of “net” connectedness.
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Fig. 4. Distribution of “to” and “from” connectedness during 2008 with the rolling window w = 100
and the forecast horizon H = 12

We draw only edges corresponding to a “net” connec-
tedness larger than 5, where black indicates connec-
tedness between 5 and 10, blue between 10 and 20 and
red larger than 20. Orange nodes are used for banks,
and green nodes for insurances. The node size is an
indicator for the market capitalization. We observe that
the eight firms are pretty much connected to each other
on June 10 with net-transmitters Allianz and Miinchner
Riick having significant impact on the other institu-

June 10, total connected-
ness 40.44

tions. For the following day, the connectedness hardly
changes. On June 12, the threat exists that the share-
holders of IKB will lose their money. With a time shift
of one day, we see that IKB becomes a strong net-
transmitter on June 13. The shock in IKB affects al-
most all other firms in the system. For the next days,
the “to” connectedness of IKB is very high till June 19.
Compare also Figure 2, where the total connectedness
shows pronounced jumps around June 10.

June 13, total connected-
ness 79.44

Fig. 5. We plotted all “net” pairwise directional connectedness more than 5. The black edges describe connectedness between 5 and
10, the blue edges between 10 and 20 and the red ones more than 20. The vertices of Allianz and Miinchner Riick are marked
green, as they are insurance companies. The node size is an indicator for the stock market capitalization

Similarly, for the end of July, we see in Figure 2
that the total connectedness increased for some
days before it fell down again. On July 25,
Miinchner Riick and another insurance company
Hannover Riick announced their expectations
about their profit. Since then, it was obvious
that the insurance sector in Germany was
also affected by the financial crisis. In Figure 6,
where “net” pairwise directional connectedness
on July 24 and July 25 is shown, we can see a
huge increase of “to” connectedness of Miinchner
Riick after that announcement. In fact, “to”
connectedness increased to more than 200. Noti-
ceable is the pairwise connectedness between
Miinchner Riick and all others, except Deutsche
Bank. Since Allianz is also an insurance company,
it is not surprising that the impact of Allianz to
others increases too.

2.4. Bankruptcy of Lehman Brothers: a detailed
connectedness analysis. In this section, we zoom in
September 2008 and consider the development of
pairwise and net pairwise directional connectedness
around the bankruptcy of Lehman Brothers. This daily
analysis provides valuable insights to better understand
the current stages of the financial crisis and to identify
impacts (and roots) of shocks. Table 4 gives an over-
view of most important events that affected significant-
ly the financial market during September 2008. Figure
7 shows net pairwise directional connectedness for
several days. Here, edges are only plotted between
pairs of firms if the corresponding net pairwise direc-
tional is larger than 5 (note the difference here to Fig-
ures 5 and 6). We observe that the strength of connec-
tedness among the firms varies considerably during
September. For instance, the total connectedness fluc-
tuates between 37.84 and 87.52.
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July 24, total connected-
ness 47.33

We begin with the connectedness analysis on Sep-
tember 11. As the liquidity crisis started on Sep-
tember 9, the banks did not trust each other any-
more and were not willing to lend money to other
banks. The EURIBOR' increased for September
and October. The total connectedness on Septem-
ber 11 reaches its second lowest value for the
whole year and the “own” connectedness is rather
large. Only a few net pairwise connections be-
tween the firms are present. The firms want to
leave the system and to be independent from
the other firms.

On September 12, Deutsche Bank became the
greatest single shareholder of Postbank. The total
connectedness went up. Noticeable is the substan-
tially increased impact of Postbank on the other
firms. More precisely, the from directional con-
nectedness of Postbank is very high with C,_p,s =
522.93 and the net pairwise connectedness from
Postbank to the single institutions ranges between
47.45 and 86.02. The large connectedness from
Postbank to the others remains till September 17.
September 15 is also called “Black Monday”.
Lehman Brothers was bankrupt. The total connec-
tedness falls. The pairwise connectedness between
the firms decreases too, except the impact of
Postbank to the others. The stock prices of
the firms lose about 22% to 33% of their value in
the following days.

On September 18, Central Banks of America,
Europe and Japan offer more than 180 billion US-
Dollar to reduce tensions on the financial market.
Banks can lend up to 40 billion Euro for one day, as
well as Euro quick tenders from the European Cen-
tral Bank. The total connectedness rises and the net
pairwise connections become very strong.

On September 19, the US administration worked
on a 700 billion US Dollar plan to rescue banks.
The fund was to protect several banks. Some stock
prices begin to rise up again. In Germany, the Ba-

'EURIBOR is the interest rate at which banks lend to each other in Europe.
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July 25, total connected-
ness 73.91

Fig. 6. For description, see figure 5

Fin (BundesanstaltfiirFinanzdiensleistungsaufsicht)
prohibited naked short sales to stop the falling
prices. The law was valid from the September 20
till December 31. Banking and insurance sector
firms were particularly affected: Aareal Bank, Al-
lianz, AMB Generali Holding, Commerzbank,
Deutsche Bank, Deutsche Borse, Deutsche Post-
bank, Hannover Riickversicherung, Hypo Real
Estate, MLP and Miinchener Riick. Great Britain
and the US passed the same law too.

Till September 22, the total connectedness remained
high. In these days, several shocks occurred that
affected the whole system such that we can hardly
connect each single shock to its trigger firm. But
for the single days, we can divide the institutions
into groups. On September 18, the net-transmitters
are Commerzbank, comdirect bank and Allianz
and the net-receivers are Aareal Bank, IKB and
Miinchner Riick. On the September 19, the net-
transmitters are Commerzbank, comdirect bank
and Allianz and the net-receivers are Deutsche
Bank, Postbank, Aareal Bank, IKB and Miinchner
Riick. On September 22, the net-transmitters are
comdirect bank and Allianz and the net-receivers
are Miinchner Riick and Deutsche Bank. On Sep-
tember 23, the total connectedness began to fall
and the strong pairwise connections began to va-
nish from the system. Mitigating the impacts of
the financial crisis and stabilizing the system, the
Federal government of Germany lent money to
crisis-affected banks and gave guarantees.

Table 4. Timetable of important events
in September 2008

Date
Sep 9|Begin of the liquidity crisis. Banks do not trust each other anymore.

Sep |Deutsche Bank holds 29.75% shares of Postbank and is now the
12 |greatest single shareholder.

Sep |(Investment bank Lehman Brothers is bankrupt.
15 |Merill Lynch is acquired by Bank of America.
US administration rescues insurance company AlG.

Sep |Banks can lend up to 40 billion Euro for one day to overcome their
18  |liquidity difficulties.

Sep |The US administration decides to stabilize the banking system with 700
19  |billion USD. Hence, a lot of stocks rise, e.g., Commerzbank.

Prohibition of short sales by BaFin. Several stocks of banks and
insurance companies were affected.

Event




Sep 11, total connected-
ness 37.84
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Sep 12, total connected-
ness 79.91

Sep 15, total connected-
ness 46.04

Sep 18, total connected-
ness 84,92

Sep 19, total connected-
ness 37.52

Sep 22, total connected-
ness 83.63

Fig. 7. We plotted all net pairwise directional connectedness more than 5. The black edges describe connectedness
between 5 and 8, the blue edges between 8 and 10 and the red ones more than 10. The vertices of Allianz
and Miinchner Riick are marked green as they are insurance companies. The node size is an indicator
for the stock market capitalization

2.5. Robustness check. In conclusion of this sec-
tion, we discuss the robustness of connectedness
analysis with respect to the choice of model para-
meters. These are the VAR order p, the rolling
window size w and the forecast horizon H. Fur-
thermore, we consider the Cholesky factorization
in comparison to the generalized variance decom-
position. The corresponding analyses with differ-
ent parameters are not reported in this paper, but
can be requested from the authors.

2.5.1. Varying the VAR order p. We conducted an
analysis of dynamic total connectedness during
2008 based on VAR(1) and VAR(5) models in
comparison to the VAR(3) model used in section
3. We observed that total connectedness based on
VAR(1) model estimates is about 10% lower
in comparison to the VAR(3) model, whereas
the VAR(5) model tends to lead to somewhat
larger total connectedness. However, in times

of crises, e.g., during September and October
2008, the total connectedness measures based on
VAR (p) with p = 1,3,5 are similar and do not
differ that much. Though we see some differences
in the total connectedness, its evolution during
2008 is qualitatively comparable for all VAR or-
ders p = 1,3,5. This leads us to the conclusion that
the chosen VAR(3) model is robust with respect
to the VAR order.

2.5.2. Varying the rolling window size w and time
horizon H. To check the robustness to the choices
of w and H, we conducted the same total
connectedness analysis, as in section 3, for
w € {75,100,125}and H € {6,12,18}. Note that
there is no general reason why the connected-
ness model should be robust to these parameters.
Setting w = 100 and varying H, we nearly see no
differences in total connectedness. If differ-
rences occur, then, they are small. With decreased
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window size w = 75 and varying H, we observe
differences between the variation of the models
and the preferred model with w = 100 and
H = 12 rises with the size of H. In non-crisis
times, the total connectedness is overestimated,
but in crisis times, there are hardly any deviations
between the models. Increasing the window
size to w = 125 and varying H leads to larger
differences between this model and the chosen
model for smaller values of H. Especially in
crisis times, there are almost no differences. In
non-crisis times, the total connectedness is unde-
restimated. Qualitatively, the evolution over
the year turns out to be very similar for w = 75
and w = 125. We conclude that the results are
pretty robust to the choice of rolling window size
and forecast horizon.

2.5.3. Comparison to Cholesky factorization.
Concluding our robustness assessment, we com-
pare our results using the generalized variance
decomposition to corresponding results using
the Cholesky factorizations. As the latter results
crucially depend on the ordering of the variables,
it is not suitable for assessing pairwise and total
directional connectedness, but it should be robust
for total connectedness.

Given the dependence of the Cholesky approach
on the ordering, we considered the maximal,
the minimal and the average value of total connec-
tedness. The latter are computed considering
all possible permutations of the variables'.
This approach is preferred by Kléfner and Wag-
ner (2012) to the method propagated by Diebold
und Yilmaz (2014) based on GVDs. Diebold
and Yilmaz (2014) used 100 random orderings of
the realized stock return volatilities to get the to-
tal connectedness by Cholesky factorization
and averaged over these 100 orderings. The dif-
ferences between the GVD approach and the ap-
proach of KléBner und Wagner (2012) for the
total connectedness are very small for the average,
whereas the deviations are huge for the maxi-
mum and minimum values. Qualitatively, the evo-
lution of the total connectedness by the GVD
and Cholesky factorization are quite similar. Fur-
thermore, for the average Cholesky approach, we
varied also the window size w € {75,100, 125}
and the forecast horizon H € {6,12,18}.
Irrespective of the choice of the rolling window
size and the predictive horizon, we observed only
small deviations of total connectedness during
2008 between GVD and Cholesky factorization.

'We used the R package “fastSOM” by KloBner und Wagner (2012)
for getting the values.
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Especially in crisis time (September and Octo-
ber), the deviations vanish. Overall, we
get that the results are pretty robust to the
Cholesky factorization.

Conclusion

We have conducted a connectedness analysis, as
proposed by Diebold und Yilmaz (2014), for eight
German financial institutions during the finan-
cial crisis in 2008. Using high-frequency intra-
day stock trading data, we calculate the daily
realized return volatility, which serves as the basis
of our analysis. We provide several versions
of volatility connectedness that help to understand
the interplay between financial institutions.
In particular, these measures allow to study the
evolution of connectedness during crises. In
general, connectedness in Germany can be de-
picted well by using the approach of Diebold
and Yilmaz (2014) based on VAR models and
GVDs. Our empirical results are nicely interpreta-
ble and lead to helpful insight. For example,
we see that with the exception of IKB, all firms
affected by the financial crisis show large
static connectedness. However, a closer look
at dynamic connectedness measures reveals that
IKB is dominated by one huge peak in “to”
connectedness which results in very large static
“own” connectedness. Also, as expected, we
find pronounced connectedness between firms
that, indeed, have contractual obligations, as,
e.g., Postbank and Deutsche Bank or Miinchner
Riick and Allianz. The dynamic analysis shows
that connectedness measures can react quickly on
shocks occurring at the market.
For example, the shocks triggered by IKB, Leh-
man Brothers or insurance companies immediate-
ly lead to an increase of total connectedness.
Not expected was the rather low connectedness
between Deutsche Bank and the other banks.
Nevertheless, this result turns out to plausible
indeed, as Deutsche Bank has by far the largest
market capitalization among them and it
is the only German bank that can be looked
upon as a global player. Hence, Deutsche Bank
plays in a different league leading to low connec-
tedness to the other German banks. Finally,
robustness checks indicate that our empirical
results are quite robust to different para-
meter choices. In summary, the values resulting
from this method should not be taken as abso-
lutes, but rather as an indication of connected-
ness among financial firms. Nevertheless, as it
gives insights in the interdependencies between
financial institutions it can be helpful tool, e.g.,
for risk management and asset pricing.
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