УДК 577.158.54

СТАБИЛЬНОСТЬ α-ГАЛАКТОЗИДАЗЫ Aspergillus niger В УСЛОВИЯХ ТЕМПЕРАТУРНОГО ВОЗДЕЙСТВИЯ

Н. В. Борзова

Институт микробиологии и вирусологии им. Д. К. Заболотного НАН Украины, Киев

E-mail: nv borzova@bigmir.net

Исследована термостабильность α -галактозидазы Aspergillus niger в температурном диапазоне 50-60 °C при оптимуме pH-активности, с использованием в качестве субстрата n-нитрофенил- α -D-галактопиранозида. Определены кинетические параметры диссоциативной термоинактивации энзима при 51 и 54 °C. Показана возможность стабилизации молекулы в присутствии глюкозы, сахарозы, трегалозы, мелибиозы, рафинозы, стахиозы (5 г/л) и BCA (1%). Результаты работы могут быть использованы для получения стабильных препаратов энзима и применения в биотехнологических процессах.

Ключевые слова: α -галактозидаза, Aspergillus niger, механизм инактивации, константы термоинактивации.

α-Галактозидаза (К. Ф.3.2.1.22) — гликозил-гидролаза, способная отщеплять, как правило с сохранением их оптической конфигурации, терминальные нередуцирующие остатки α-D-галактозы от α-D-галактозидов, в том числе от галактоолигосахаридов, галактоманнанов и галактолипидов. Их простейшими природными субстратами являются дисахарид мелибиоза и трисахарид рафиноза. В ряде случаев у α-галактозидаз обнаружена трансгалактозидазная активность.

Широкие возможности применения α-галактозидаз открываются в таких областях, как пищевая промышленность, в частности для повышения выхода сахара из мелассы [1], в качестве кормовых добавок для увеличения питательной ценности продуктов из сои за счет гидролиза галактоолигосахаридов рафинозы и стахиозы, в производстве диетического питания для детей и людей пожилого возраста [2]. Перспективны препараты α-галактозидазы и в медицине: для энзимотерапии некоторых наследственных заболеваний человека [3], в ксенотрансплантации [4], для биотрансформации эритроцитов крови человека группы В (III) в донорские эритроциты О-типа [5].

Для успешного использования энзимов прежде всего необходимо решить задачу стабилизации активности этих биокатализаторов. Изучение термостабильности и механизмов инактивации протеиновой молекулы в различных условиях — важный аспект

в получении эффективных препаратов для успешного применения в биотехнологических процессах. Кроме того, ингибиторный анализ энзимов, в том числе и α-галактозидаз, полученных из различных источников, позволяет расширить наши знания о влиянии эффекторов разной природы на проявление активности в зависимости от строения активного центра, его окружения и аминокислотной последовательности.

Целью работы было изучить термостабильность олигомерной α -галактозидазы Aspergillus niger, исследовать кинетику и возможный механизм термоинактивации этого энзима для последующего сравнительного анализа с другими микромицелиальными α -галактозидазами.

Материалы и методы

В работе использовали внеклеточную α -галактозидазу A. niger, полученную в результате очистки на заряженных и нейтральных TSK-гелях, как описано ранее [6].

Исследования термоинактивации α -галактозидазы A. niger проводили в диапазоне температур 50-60 °C при pH 5,7 (1 мМ фосфатно-цитратный буфер — Φ ЦБ).

Активность α -галактозидазы определяли с помощью n-нитрофенил- α -D-галактопиранозида (Sigma, США) [7]. За единицу активности принимали такое количество энзима, которое гидролизует 1 мкмоль субстрата в 1 мин в условиях опыта.

Кинетика термоинактивации. Образцы энзима 0.05-0.5~E/мл в 1~мм ФЦБ, рН 5.7, выдерживали при различных температурах на протяжении 1.5-3 ч. Через определенные промежутки времени (10-30~мин) отбирали аликвоты по 0.1~мл и измеряли α -галактозидазную активность. Для реинактивации после термообработки образцы инкубировали при 40~C 24~v.

Обработку энзима глутаровым альдегидом осуществляли следующим образом: к 1 мл очищенного раствора энзима (10 E/мл) добавляли 10-50 мкл 50%-го глутарового альдегида и выдерживали при комнатной температуре в течение 15-60 мин, остатки реагента удаляли гель-фильтрацией на Sepharose 6B. Далее обработку проводили, как описано выше.

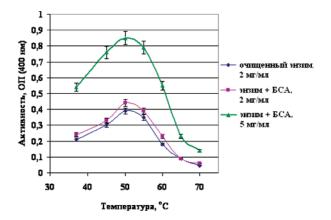
Углеводы (галактоза, глюкоза, мальтоза, сахароза, трегалоза, мелибиоза, рафиноза, стахиоза, сухая бычья кровь) и бычий сывороточный альбумин (БСА) использовали в концентрации 0.5%, глицерол — 5-40%, дитиотреитол и цистеин — 10^{-3} М.

Изучение кинетики и расчет констант термоинактивации проводили согласно работе Полторак и др. [8]. Для расчета эффективной константы скорости денатурации $k_{\text{лен}}$ и константы диссоциации $K_{\text{лис}}$ строили кинетические кривые термоинактивации в полулогарифмических координатах $\ln v_{\tau}/v_{o}$ от t, где v_{o} — скорость энзиматической реакции при t = 0. По пересечению касательных, проведенных к линейным участкам кинетической кривой, определяли точку излома при $t=\tau$. По тангенсам углов наклона касательных определяли $k_{
m add}$ (константы скорости диссоциации олигомера и ассоциации мономеров). $K_{\text{пис}}$ рассчитывали по формуле:

$$K_{\text{дис}} = 4 \text{ [E}_0] (v_0 - v_{\tau})^2 / v_0 v_{\tau},$$

где E_0 — концентрация олигомерной формы энзима в начальный момент времени, $v_{\rm o}$ и $v_{\rm \tau}$ — максимальные скорости контрольной каталитической реакции в начальный момент времени и в момент времени τ , отвечающий точке излома.

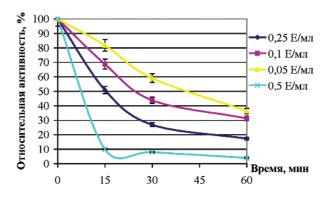
Константу скорости денатурации $k_{\rm ден}$ определяли по формуле:

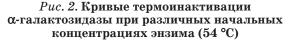

$$k_{\text{ден}} = k_{\text{эфф}}(v_{\text{o}} + v_{\text{\tau}})/2(v_{\text{o}} - v_{\text{\tau}}).$$

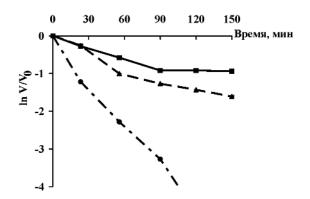
Результаты и обсуждение

Как показали исследования последних лет [8, 9, 10], термоинактивация энзимов может происходить по различным механизмам, однако для олигомерных энзимов, ка-

ковым является и α-галактозидаза A. niger, наиболее важен диссоциативный. Характерный признак проявления такого механизма— наличие обратимых стадий диссоциации, которые предшествуют кинетически необратимому изменению.


Поскольку механизмы термоинактивации проявляются прежде всего в температурном диапазоне, близком к термооптимуму действия энзима, было изучено положение термооптимума α -галактозидазы $A.\ niger.$ Показано (рис. 1), что термооптимум действия энзима достигается при $50\ ^{\circ}\mathrm{C}.$




Puc. 1. Термооптимум α-галактозидазы A. niger (pH 5,7)

Далее изучали термоинактивацию α-галактозидазы A. niger в диапазоне температур 51-60 °C. Было установлено, что в указанном интервале температур зависимость остаточной активности α-галактозидазы от времени описывается уравнением второго порядка. Зависимость термостабильности энзима от его концентрации показана на рис. 2, из которого следует, что время полуинактивации обратно пропорционально концентрации α-галактозидазы. Также время полуинактивации зависело от температуры при фиксированной концентрации энзима 0,25 Е/мл (рис. 3). При малом времени термообработки (57°C) отмечалась частичная реинактивация α -галактозидазы A. niger, при 51 и 54 °C реинактивацию наблюдали на протяжении 1,5-2 ч обработки (табл. 1).

Ранее было показано [6], что исследуемая α-галактозидаза является гексамером с молекулярной массой 430 кДа. Поэтому можно было ожидать проявления диссоциативного механизма термоинактивации. Как было установлено, наблюдается восстановление активности при непродолжительном времени термообработки, зависимость времени полуинактивации от концентрации

Puc.~3. Кинетика термоинактивации α-галактозидазы при различных температурах (—— $51~^{\circ}$ C, ----- $54~^{\circ}$ C, ---- $57~^{\circ}$ C)

Tаблица 1. Термоинактивация и реинактивация α -галактозидазы A. niger при различных температурах

	Обработка	Остаточная активность, % Время инактивации, мин			
Температура, °С					
		15	30	60	90
51	Инактивация	68,1	72,3	53,2	41,4
	Реинактивация	90,1	91,2	59,6	46,8
54	Инактивация	63,3	40,1	16,6	5,2
	Реинактивация	76,7	46,7	33,3	16,6
57	Инактивация	19,6	11,9	5,2	2,1
	Реинактивация	22,7	11,6	4,9	2,0
60	Инактивация	10,1	5,2	2,1	1,8
	Реинактивация	9,6	4,8	2,15	1,5

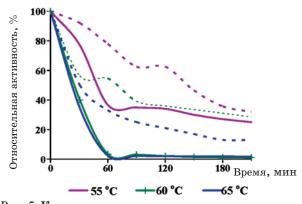
энзима при фиксированной температуре и от температуры при фиксированной концентрации энзима. Характер кривых в полулогарифмических координатах также позволяет утверждать это, поскольку при 51 и 54 °C отмечаются точки излома. При 57 и 60 °C нам удалось наблюдать только инактивацию по первому кинетическому порядку. Рассчитанные эффективные константы скорости характеризуют период полураспада исходного протеина в условиях опыта. Для процесса термоинактивации при 51 и 54 °C нами были рассчитаны и константы диссоциации и ассоциации элементарных процессов (табл. 2).

Характерная зависимость вида кинетических кривых диссоциативной инактивации по двухстадийному механизму при постоянной концентрации энзима от температуры связана с рядом факторов: различием температурных коэффициентов процессов диссоциации и денатурации и резким увеличением $K_{\text{дисс}}$ с ростом температуры, что также нами наблюдалось (рис. 3, табл. 2).

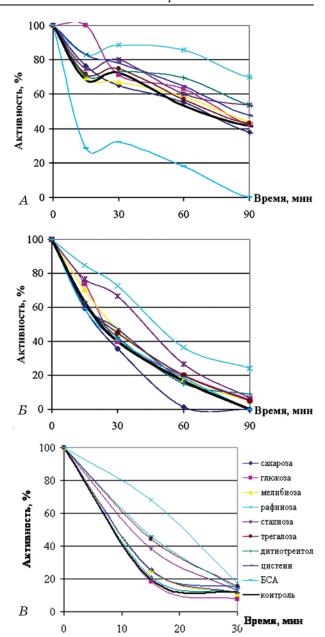
При исследовании методом гель-фильтрации на сефарозе 6В нативного и инактивированного препарата α-галактозидазы A. niger было показано, что в результате тер-

мообработки наряду с уменьшением количества фракции, соответствующей 430 кДа, появляется низкомолекулярная протеиновая фракция с молекулярной массой порядка 200 кДа, не проявляющая α-галактозидазной активности. Эти результаты косвенно также могут указывать на диссоциацию олигомера в результате термообработки, хотя для подтверждения этого необходимо исследовать препараты методом гель-электрофореза.

Известно [11], что ионы, кофакторы, метаболиты и другие вещества могут вносить существенный вклад в стабильность протеина, сдвигая температуру денатурации термически нестабильных протеинов к верхнему температурному пределу деградации. Нами было изучено влияние на активность и стабильность α-галактозидазы A. niger большого количества соединений различной природы. Так, было показано (рис. 4, a-e), что ряд углеводов и субстратов энзима оказывают ощутимый стабилизирующий эффект во время термообработки при 51-57 °C. Раффиноза и стахиоза (три- и тетрасахарид) были более эффективными протекторами, чем дисахарид мелибиоза. Возможно, присутствие субстратов препятствует диссоциации


Taблица~2. Кинетические константы термоинактивации lpha-галактозидазы $A.\ niger$

T, °C	$k_{\partial uc},\mathrm{c}^{\scriptscriptstyle{-1}}$	$k_{ac},\mathrm{c}^{\scriptscriptstyle{-1}}$	$m{k}_{ m ден}$, $f{c}^{\scriptscriptstyle -1}$	$K_{\partial uc}$, мкМ
51	$1,8 \times 10^{-4}$	$1,5 \times 10^{-5}$	$1,5 \times 10^{-5}$	11,9
54	$6,3 \times 10^{-4}$	$3,2\times10^{-5}$	$1,7 \times 10^{-5}$	19,1
57	_	_	$4,1\times10^{-6}$	392
60	_	_	$4,7 \times 10^{-6}$	398


олигомера за счет изменения гидрофобности протеиновой молекулы. Стабилизация молекулы энзима в присутствии таких углеводов, как глюкоза, трегалоза и сахароза, может происходить за счет увеличения вязкости раствора. Поскольку ранее [6] нами было установлено наличие SH-групп в молекуле энзима из $A.\ niger$, мы использовали такие протекторы этих групп, как цистеин и дитиотреитол. Однако в использованной концентрации эти вещества стабилизировали α -галактозидазу лишь в незначительной степени. Внесение БСА в реакционную смесь было менее эффективным (рис. 4, a-e), чем лиофилизация препарата энзима в присутствии 1% БСА (рис. 5).

Присутствие глутарового альдегида в исследованных концентрациях значительно увеличивало скорость и степень (в 10 раз) термальной инактивации α-галактозидазы *A. niger* (рис. 6). Вероятно, образованные альдегидом сшивки повышали жесткость активного центра и таким образом снижали каталитическую активность энзима. Не было нами отмечено (рис. 6) и стабилизационного действия глицерола в процессе термоинактивации.

Таким образом, в результате проведенной работы была исследована термостабильность α -галактозидазы $A.\ niger$. Показано, что термоинактивация при $51\ u\ 54\ ^{\circ}\mathrm{C}$ происходит по диссоциативному механизму, а при $57-60\ ^{\circ}\mathrm{C}$ —

Puc. 5. Кинетические кривые термоинактивации α-галактозидазы A. niger в диапазоне температур 55-65 °C (—очищеный энзим, ---- энзим, лиофилизированный в присутствии 1% БСА)

Puc.~4. Кинетические кривые термоинактивации α-галактозидазы A.~niger при 51 °C (A), 54 °C (B), 57 °C (B) в присутствии различных веществ

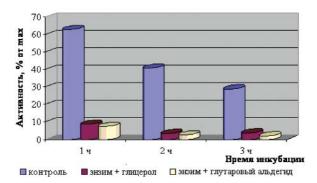


Рис. 6. Зависимость активности α-галактозидазы A. niger от времени в присутствии глицерола и глутарового альдегида при 54 °C

по механизму денатурации первого порядка. Определены кинетические параметры диссоциативной термоинактивации этого энзима и изучены некоторые вопросы стабилизации α-галактозидазы в условиях температурного воздействия в присутствии углеводов и БСА.

ЛИТЕРАТУРА

- 1. Linden J. C. Immobilized α -D-galactosidase in the sugar beet industry // Enzyme Microbiol. Technol. 1982. T. 4, N 3. P. 130–136.
- 2. Yoon M. Y., Hwang H. J. Reduction of soybean oligosaccharides and properties of alpha-D-galactosidase from Lactobacillus curvatus R08 and Leuconostoc mesenteroides [corrected] JK55 // Food Microbiol. 2008. V. 25, N 6. P. 815–823.
- 3. Lidove O., Joly D., Barbey F. et al. Clinical results of enzyme replacement therapy in Fabry disease: a comprehensive review of literature // Int. J. Clin. Pract. 2007. V. 61, N 2. P. 293–302.
- 4. Sandrin M. S., Osman N., McKenzie I. F. Transgenic approaches for the reduction of Galalpha(1,3)Gal for xenotransplantation // Front Biosci. 1997. V. 2. P. 1–11.
- 5. Hata D. J., Smith D. S. Blood group B degrading activity of Ruminococcus gnavus alpha-galactosidase // Artif. Cells Blood Substit. Immobil. Biotechnol. 2004. V. 32, N 2. P. 263–274.
- 6. *Борзова Н. В.* α-N-Ацетилгалактозамінідаза та α-галактозидаза *Aspergillus niger* 185ш:

Все это позволит подбирать и оптимизировать условия для наиболее эффективного использования энзима на практике: в процессах гидролиза олигосахаридов сои для получения продуктов улучшенного качества и в производстве сахара.

- Автореф. дис. ... канд. біол. наук: 03.00.07/ Ін-т мікробіол. і вірусол. ім. Д. К. Заболотного К., 2003. 21 с.
- 7. Chaplin M. E., Kennedy J. E. Carbohydrate analysis. Oxford; Washington: IRL Press, 1986.—228 p.
- 8. Полторак О. М., Чухрай Е. С., Торшин И. Ю. Диссоциативная термоинактивация, стабильность и активность олигомерных ферментов // Биохимия. 1998. Т. 63, № 3. С. 360–369.
- 9. Santos A., Ladero M., Garcia-Ochoa F. Kinetic modeling of lactose hydrolysis by a β-galactosidase from *Kluyveromyces fragilis* // Enzyme Microb. Technol. 1998. V. 22, N 8. P. 558–567.
- 10. Атакшева Л.Ф., Пилипенко О.С., Чухрай Е.С., Полторак О.М. Общность и различие механизмов термоинактивации β -галактозидаз из различных источников // Журн. физ. химии. 2008. Т. 82, № 5. С. 984–990.
- 11. Янике P. Что можно узнать о стабилизации белка из исследований ультрастабильных глобулярных белков // Биохимия. 1998. Т. 63, № 3. С. 370–380.

СТАБІЛЬНІСТЬ α-ГАЛАКТОЗИДАЗИ Aspergillus niger В УМОВАХ ТЕМПЕРАТУРНОГО ВПЛИВУ

Н.В.Борзова

Інститут мікробіології і вірусології ім. Д. К. Заболотного НАН України, Київ

E-mail: nv borzova@bigmir.net

Досліджено термостабільність α -галактозидази Aspergillus niger у температурному діапазоні $50\text{--}60~^{\circ}\text{C}$ в оптимумі рН-активності з використанням як субстрату n-нітрофеніл- α -D-галактопіранозиду. Визначено кінетичні параметри дисоціативної термоінактивації ензиму при 51 і $54~^{\circ}\text{C}$. Показана можливість стабілізації молекули ензиму в присутності глюкози, сахарози, трегалози, мелібіози, рафінози, стахіози (5~г/л) та БСA(1~%). Результати роботи можуть бути використані для одержання стабільних препаратів ензиму і використання в біотехнологічних процесах.

Kлючові слова: α -галактозидаза, Aspergillus niger, механізм інактивації, константи термо-інактивації.

STABILITY OF Aspergillus niger α-GALACTOSIDASE IN THERMAL ACTION

N. V. Borzova

Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv

E-mail: $nv_borzova@bigmir.net$

Thermal stability of Aspergillus niger α -galactosidase between 50 °C and 60 °C at optimum pH-activity using n-nitrophenyl- α -D-galactoside pyranoside as a substrate was studied. The kinetic parameters of dissociative thermal inactivation of enzyme were determined at 51 and 54 °C. Possibility of stabilization of protein molecule in presence of glucose, sucrose, trehalose, melibiose, raffinose and stahyose (5 g/l) and BSA (1%) is shown. Results of research could be used for stable enzyme preparation applied in biotechnological processes.

Key words: α -galactosidase, Aspergillus niger, mechanism of inactivation, constants of thermal inactivation.